Strugglingpanda / cnnimageretrieval-pytorch

CNN Image Retrieval in PyTorch: Training and evaluating CNNs for Image Retrieval in PyTorch

Home Page:http://cmp.felk.cvut.cz/cnnimageretrieval

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

CNN Image Retrieval in PyTorch: Training and evaluating CNNs for Image Retrieval in PyTorch

This is a Python toolbox that implements the training and testing of the approach described in our papers:

Fine-tuning CNN Image Retrieval with No Human Annotation,
Radenović F., Tolias G., Chum O., TPAMI 2018 [arXiv]

CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples,
Radenović F., Tolias G., Chum O., ECCV 2016 [arXiv]

What is it?

This code implements:

  1. Training (fine-tuning) CNN for image retrieval
  2. Learning supervised whitening for CNN image representations
  3. Testing CNN image retrieval on Oxford5k and Paris6k datasets

Prerequisites

In order to run this toolbox you will need:

  1. Python3 (tested with Python 3.7.0 on Debian 8.1)
  2. PyTorch deep learning framework (tested with version 1.0.0)
  3. All the rest (data + networks) is automatically downloaded with our scripts

Usage

Navigate (cd) to the root of the toolbox [YOUR_CIRTORCH_ROOT].

Training

Example training script is located in YOUR_CIRTORCH_ROOT/cirtorch/examples/train.py

python3 -m cirtorch.examples.train [-h] [--training-dataset DATASET] [--no-val]
                [--test-datasets DATASETS] [--test-whiten DATASET]
                [--test-freq N] [--arch ARCH] [--pool POOL]
                [--local-whitening] [--regional] [--whitening]
                [--not-pretrained] [--loss LOSS] [--loss-margin LM]
                [--image-size N] [--neg-num N] [--query-size N]
                [--pool-size N] [--gpu-id N] [--workers N] [--epochs N]
                [--batch-size N] [--optimizer OPTIMIZER] [--lr LR]
                [--momentum M] [--weight-decay W] [--print-freq N]
                [--resume FILENAME]
                EXPORT_DIR

For detailed explanation of the options run:

python3 -m cirtorch.examples.train -h

For example, to train our best network described in the TPAMI 2018 paper run the following command. After each epoch, the fine-tuned network will be tested on the revisited Oxford and Paris benchmarks:

python3 -m cirtorch.examples.train YOUR_EXPORT_DIR --gpu-id '0' --training-dataset 'retrieval-SfM-120k' 
            --test-datasets 'roxford5k,rparis6k' --arch 'resnet101' --pool 'gem' --loss 'contrastive' 
            --loss-margin 0.85 --optimizer 'adam' --lr 1e-6 --neg-num 5 --query-size=2000 
            --pool-size=22000 --batch-size 5 --image-size 362

Networks can be evaluated with learned whitening after each epoch. To achieve this run the following command. Note that this will significantly slow down the entire training procedure, and you can evaluate networks with learned whitening later on using the example test script.

python3 -m cirtorch.examples.train YOUR_EXPORT_DIR --gpu-id '0' --training-dataset 'retrieval-SfM-120k' 
            --test-datasets 'roxford5k,rparis6k' --test-whiten 'retrieval-SfM-30k' 
            --arch 'resnet101' --pool 'gem' --loss 'contrastive' --loss-margin 0.85 
            --optimizer 'adam' --lr 1e-6 --neg-num 5 --query-size=2000 --pool-size=22000 
            --batch-size 5 --image-size 362

Note: Data and networks used for training and testing are automatically downloaded when using the example script.

Testing

Example testing script is located in YOUR_CIRTORCH_ROOT/cirtorch/examples/test.py

python3 -m cirtorch.examples.test [-h] (--network-path NETWORK | --network-offtheshelf NETWORK)
               [--datasets DATASETS] [--image-size N]
               [--multiscale MULTISCALE] [--whitening WHITENING] [--gpu-id N]

For detailed explanation of the options run:

python3 -m cirtorch.examples.test -h

Our pretrained networks

We provide the pretrained networks trained using the same parameters as in our TPAMI 2018 paper, with precomputed whitening. To evaluate them run:

python3 -m cirtorch.examples.test --gpu-id '0' --network-path 'retrievalSfM120k-resnet101-gem' 
                --datasets 'oxford5k,paris6k,roxford5k,rparis6k' 
                --whitening 'retrieval-SfM-120k'
                --multiscale '[1, 1/2**(1/2), 1/2]'

or

python3 -m cirtorch.examples.test --gpu-id '0' --network-path 'retrievalSfM120k-vgg16-gem' 
                --datasets 'oxford5k,paris6k,roxford5k,rparis6k' 
                --whitening 'retrieval-SfM-120k'
                --multiscale '[1, 1/2**(1/2), 1/2]'

The table below shows the performance comparison of networks trained with this framework and the networks used in the paper which were trained with our CNN Image Retrieval in MatConvNet:

Model Oxford Paris ROxf (M) RPar (M) ROxf (H) RPar (H)
VGG16-GeM (MatConvNet) 87.9 87.7 61.9 69.3 33.7 44.3
VGG16-GeM (PyTorch) 87.3 87.8 60.9 69.3 32.9 44.2
ResNet101-GeM (MatConvNet) 87.8 92.7 64.7 77.2 38.5 56.3
ResNet101-GeM (PyTorch) 88.2 92.5 65.4 76.7 40.1 55.2

Your trained networks

To evaluate your trained network using single scale and without learning whitening:

python3 -m cirtorch.examples.test --gpu-id '0' --network-path YOUR_NETWORK_PATH 
                --datasets 'oxford5k,paris6k,roxford5k,rparis6k'

To evaluate trained network using multi scale evaluation and with learned whitening as post-processing:

python3 -m cirtorch.examples.test --gpu-id '0' --network-path YOUR_NETWORK_PATH 
                --datasets 'oxford5k,paris6k,roxford5k,rparis6k'
                --whitening 'retrieval-SfM-120k' 
                --multiscale '[1, 1/2**(1/2), 1/2]'

Off-the-shelf networks

Off-the-shelf networks can be evaluated as well, for example:

python3 -m cirtorch.examples.test --gpu-id '0' --network-offtheshelf 'resnet101-gem'
                --datasets 'oxford5k,paris6k,roxford5k,rparis6k'
                --whitening 'retrieval-SfM-120k' 
                --multiscale '[1, 1/2**(1/2), 1/2]'

Note: Data used for testing are automatically downloaded when using the example script.

Related publications

Training (fine-tuning) convolutional neural networks

@article{RTC18,
 title = {Fine-tuning {CNN} Image Retrieval with No Human Annotation},
 author = {Radenovi{\'c}, F. and Tolias, G. and Chum, O.}
 journal = {TPAMI},
 year = {2018}
}
@inproceedings{RTC16,
 title = {{CNN} Image Retrieval Learns from {BoW}: Unsupervised Fine-Tuning with Hard Examples},
 author = {Radenovi{\'c}, F. and Tolias, G. and Chum, O.},
 booktitle = {ECCV},
 year = {2016}
}

Revisited benchmarks for Oxford and Paris ('roxford5k' and 'rparis6k')

@inproceedings{RITAC18,
 author = {Radenovi{\'c}, F. and Iscen, A. and Tolias, G. and Avrithis, Y. and Chum, O.},
 title = {Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking},
 booktitle = {CVPR},
 year = {2018}
}

Versions

master (development)

  • Migrated code to PyTorch 1.0.0, removed Variable, added torch.no_grad for more speed and less memory at evaluation
  • Added rigid grid regional pooling that can be combined with any global pooling method (R-MAC, R-SPoC, R-GeM)
  • Added PowerLaw normalization layer
  • Added multi-scale testing with any given set of scales, in example test script
  • Fix related to precision errors of covariance matrix estimation during whitening learning
  • Fixed minor bugs

v1.0 (09 Jul 2018)

  • First public version
  • Compatible with PyTorch 0.3.0

About

CNN Image Retrieval in PyTorch: Training and evaluating CNNs for Image Retrieval in PyTorch

http://cmp.felk.cvut.cz/cnnimageretrieval


Languages

Language:Python 100.0%