RunningLeon / MobileSAM

This is the official code for MobileSAM project that makes SAM lightweight for mobile applications and beyond!

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Faster Segment Anything (MobileSAM)

πŸ“Œ MobileSAM paper is available at ResearchGate and arXiv. The latest version will first appear on ResearchGate, since it takes time for arXiv to update the content.

πŸ“Œ MobileSAM supports ONNX model export. Feel free to test it on your devices and let us know in case of unexpected issues.

πŸ“Œ A demo of MobileSAM running on CPU in the hugging face is open at demo link. On our own Mac i5 CPU, it takes around 3s. On the hugging face demo, the interface and inferior CPUs make it slower but still works fine. Stayed tuned for a new version with more features!

πŸ“Œ A demo of MobileSAM running on CPU in your own browser is open at demo link. This demo is made by MobileSAM-in-the-Browser. Note that this is an unofficial version and stayed tuned for an official version with more features!

πŸ‡ Media coverage and Projects that adapt from SAM to MobileSAM (Daily update. Thank you all!)

⭐ How is MobileSAM trained? MobileSAM is trained on a single GPU with 100k datasets (1% of the original images) for less than a day. The training code will be available soon.

⭐ How to Adapt from SAM to MobileSAM? Since MobileSAM keeps exactly the same pipeline as the original SAM, we inherit pre-processing, post-processing, and all other interfaces from the original SAM. Therefore, by assuming everything is exactly the same except for a smaller image encoder, those who use the original SAM for their projects can adapt to MobileSAM with almost zero effort.

⭐ MobileSAM performs on par with the original SAM (at least visually) and keeps exactly the same pipeline as the original SAM except for a change on the image encoder. Specifically, we replace the original heavyweight ViT-H encoder (632M) with a much smaller Tiny-ViT (5M). On a single GPU, MobileSAM runs around 12ms per image: 8ms on the image encoder and 4ms on the mask decoder.

  • The comparison of ViT-based image encoder is summarzed as follows:

    Image Encoder Original SAM MobileSAM
    Parameters 611M 5M
    Speed 452ms 8ms
  • Original SAM and MobileSAM have exactly the same prompt-guided mask decoder:

    Mask Decoder Original SAM MobileSAM
    Parameters 3.876M 3.876M
    Speed 4ms 4ms
  • The comparison of the whole pipeline is summarized as follows:

    Whole Pipeline (Enc+Dec) Original SAM MobileSAM
    Parameters 615M 9.66M
    Speed 456ms 12ms

⭐ Original SAM and MobileSAM with a point as the prompt.

⭐ Original SAM and MobileSAM with a box as the prompt.

πŸ’ͺ Is MobileSAM faster and smaller than FastSAM? Yes! MobileSAM is around 7 times smaller and around 5 times faster than the concurrent FastSAM. The comparison of the whole pipeline is summarzed as follows:

Whole Pipeline (Enc+Dec) FastSAM MobileSAM
Parameters 68M 9.66M
Speed 64ms 12ms

πŸ’ͺ Does MobileSAM aign better with the original SAM than FastSAM? Yes! FastSAM is suggested to work with multiple points, thus we compare the mIoU with two prompt points (with different pixel distances) and show the resutls as follows. Higher mIoU indicates higher alignment.

mIoU FastSAM MobileSAM
100 0.27 0.73
200 0.33 0.71
300 0.37 0.74
400 0.41 0.73
500 0.41 0.73

Installation

The code requires python>=3.8, as well as pytorch>=1.7 and torchvision>=0.8. Please follow the instructions here to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended.

Install Mobile Segment Anything:

pip install git+https://github.com/ChaoningZhang/MobileSAM.git

or clone the repository locally and install with

git clone git@github.com:ChaoningZhang/MobileSAM.git
cd MobileSAM; pip install -e .

Getting Started

The MobileSAM can be loaded in the following ways:

from mobile_sam import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor

model_type = "vit_t"
sam_checkpoint = "./weights/mobile_sam.pt"

device = "cuda" if torch.cuda.is_available() else "cpu"

mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
mobile_sam.to(device=device)
mobile_sam.eval()

predictor = SamPredictor(mobile_sam)
predictor.set_image(<your_image>)
masks, _, _ = predictor.predict(<input_prompts>)

or generate masks for an entire image:

from mobile_sam import SamAutomaticMaskGenerator

mask_generator = SamAutomaticMaskGenerator(mobile_sam)
masks = mask_generator.generate(<your_image>)

ONNX Export

MobileSAM now supports ONNX export. Export the model with

python scripts/export_onnx_model.py --checkpoint ./weights/mobile_sam.pt --model-type vit_t --output ./mobile_sam.onnx

Also check the example notebook to follow detailed steps. We recommend to use onnx==1.12.0 and onnxruntime==1.13.1 which is tested.

BibTex of our MobileSAM

If you use MobileSAM in your research, please use the following BibTeX entry. πŸ“£ Thank you!

@article{mobile_sam,
  title={Faster Segment Anything: Towards Lightweight SAM for Mobile Applications},
  author={Zhang, Chaoning and Han, Dongshen and Qiao, Yu and Kim, Jung Uk and Bae, Sung Ho and Lee, Seungkyu and Hong, Choong Seon},
  journal={arXiv preprint arXiv:2306.14289},
  year={2023}
}

Acknowledgement

SAM (Segment Anything) [bib]
@article{kirillov2023segany,
  title={Segment Anything}, 
  author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
  journal={arXiv:2304.02643},
  year={2023}
}
TinyViT (TinyViT: Fast Pretraining Distillation for Small Vision Transformers) [bib]
@InProceedings{tiny_vit,
  title={TinyViT: Fast Pretraining Distillation for Small Vision Transformers},
  author={Wu, Kan and Zhang, Jinnian and Peng, Houwen and Liu, Mengchen and Xiao, Bin and Fu, Jianlong and Yuan, Lu},
  booktitle={European conference on computer vision (ECCV)},
  year={2022}

About

This is the official code for MobileSAM project that makes SAM lightweight for mobile applications and beyond!

License:Apache License 2.0


Languages

Language:Jupyter Notebook 99.2%Language:Python 0.8%Language:Shell 0.0%