The Redis Vector Library (RedisVL) is a PHP client for AI applications leveraging Redis.
Designed for:
- Vector similarity search
- Recommendation engine
A perfect tool for Redis-based applications, incorporating capabilities like vector-based semantic search, full-text search, and geo-spatial search.
composer install redis-ventures/redisvl
Choose from multiple Redis deployment options:
- Redis Cloud: Managed cloud database (free tier available)
- Redis Stack: Docker image for development
docker run -d --name redis-stack -p 6379:6379 -p 8001:8001 redis/redis-stack:latest
- Redis Enterprise: Commercial, self-hosted database
- Design your schema that models your dataset with one of the available Redis data structures (HASH, JSON) and indexable fields (e.g. text, tags, numerics, geo, and vectors).
Load schema as a dictionary:
$schema = [
'index' => [
'name' => 'products',
'prefix' => 'product:',
'storage_type' => 'hash',
],
'fields' => [
'id' => [
'type' => 'numeric',
],
'categories' => [
'type' => 'tag',
],
'description' => [
'type' => 'text',
],
'description_embedding' => [
'type' => 'vector',
'dims' => 3,
'datatype' => 'float32',
'algorithm' => 'flat',
'distance_metric' => 'cosine'
],
],
];
- Create a SearchIndex object with an input schema and client connection to be able to interact with your Redis index
use Predis\Client;
use RedisVentures\RedisVl\Index\SearchIndex;
$client = new Client();
$index = new SearchIndex($client, $schema);
// Creates index in the Redis
$index->create();
- Load/fetch your data from index. If you have a hash index data should be loaded as key-value pairs , for json type data loads as json string.
$data = ['id' => '1', 'count' => 10, 'id_embeddings' => VectorHelper::toBytes([0.000001, 0.000002, 0.000003])];
// Loads given dataset associated with given key.
$index->load('key', $data);
// Fetch dataset corresponding to given key
$index->fetch('key');
Define queries and perform advanced search over your indices, including combination of vectors and variety of filters.
VectorQuery - flexible vector-similarity semantic search with customizable filters
use RedisVentures\RedisVl\Query\VectorQuery;
$query = new VectorQuery(
[0.001, 0.002, 0.03],
'description_embedding',
null,
3
);
// Run vector search against vector field specified in schema.
$results = $index->query($query);
Incorporate complex metadata filters on your queries:
use RedisVentures\RedisVl\Query\Filter\TagFilter;
use RedisVentures\RedisVl\Enum\Condition;
$filter = new TagFilter(
'categories',
Condition::equal,
'foo'
);
$query = new VectorQuery(
[0.001, 0.002, 0.03],
'description_embedding',
null,
10,
true,
2,
$filter
);
// Results will be filtered by tag field values.
$results = $index->query($query);
Numeric filters could be applied to numeric fields. Supports variety of conditions applicable for scalar types (==, !=, <, >, <=, >=). More information here.
use RedisVentures\RedisVl\Query\Filter\NumericFilter;
use RedisVentures\RedisVl\Enum\Condition;
$equal = new NumericFilter('numeric', Condition::equal, 10);
$notEqual = new NumericFilter('numeric', Condition::notEqual, 10);
$greaterThan = new NumericFilter('numeric', Condition::greaterThan, 10);
$greaterThanOrEqual = new NumericFilter('numeric', Condition::greaterThanOrEqual, 10);
$lowerThan = new NumericFilter('numeric', Condition::lowerThan, 10);
$lowerThanOrEqual = new NumericFilter('numeric', Condition::lowerThanOrEqual, 10);
Tag filters could be applied to tag fields. Single or multiple values can be provided, single values supports only equality conditions (==, !==), for multiple tags additional conjunction (AND, OR) could be specified. More information here
use RedisVentures\RedisVl\Query\Filter\TagFilter;
use RedisVentures\RedisVl\Enum\Condition;
use RedisVentures\RedisVl\Enum\Logical;
$singleTag = new TagFilter('tag', Condition::equal, 'value')
$multipleTags = new TagFilter('tag', Condition::notEqual, [
'conjunction' => Logical::or,
'tags' => ['value1', 'value2']
])
Text filters could be applied to text fields. Values can be provided as a single word or multiple words with specified condition. Empty value corresponds to all values (*). More information here
use RedisVentures\RedisVl\Query\Filter\TextFilter;
use RedisVentures\RedisVl\Enum\Condition;
$single = new TextFilter('text', Condition::equal, 'foo');
// Matching foo AND bar
$multipleAnd = new TextFilter('text', Condition::equal, 'foo bar');
// Matching foo OR bar
$multipleOr = new TextFilter('text', Condition::equal, 'foo|bar');
// Perform fuzzy search
$fuzzy = new TextFilter('text', Condition::equal, '%foobaz%');
Geo filters could be applied to geo fields. Supports only equality conditions, value should be specified as specific-shape array. More information here
use RedisVentures\RedisVl\Query\Filter\GeoFilter;
use RedisVentures\RedisVl\Enum\Condition;
use RedisVentures\RedisVl\Enum\Unit;
$geo = new GeoFilter('geo', Condition::equal, [
'lon' => 10.111,
'lat' => 11.111,
'radius' => 100,
'unit' => Unit::kilometers
]);
To apply multiple filters to a single query use AggregateFilter.
If there's the same logical operator that should be applied for each filter you can pass values in constructor,
if you need a specific combination use and()
and or()
methods to create combined filter.
use RedisVentures\RedisVl\Query\Filter\AggregateFilter;
use RedisVentures\RedisVl\Query\Filter\TextFilter;
use RedisVentures\RedisVl\Query\Filter\NumericFilter;
use RedisVentures\RedisVl\Enum\Condition;
use RedisVentures\RedisVl\Enum\Logical;
$aggregate = new AggregateFilter([
new TextFilter('text', Condition::equal, 'value'),
new NumericFilter('numeric', Condition::greaterThan, 10)
], Logical::or);
$combinedAggregate = new AggregateFilter();
$combinedAggregate
->and(
new TextFilter('text', Condition::equal, 'value'),
new NumericFilter('numeric', Condition::greaterThan, 10)
)->or(
new NumericFilter('numeric', Condition::lowerThan, 100)
);
To be able to effectively create vector representations for your indexed data or queries, you have to use LLM's. There's a variety of vectorizers that provide integration with popular embedding models.
The only required option is your API key specified as environment variable or configuration option.
use RedisVentures\RedisVl\Vectorizer\Factory;
putenv('OPENAI_API_TOKEN=your_token');
$factory = new Factory();
$vectorizer = $factory->createVectorizer('openai');
// Creates vector representation of given text.
$embedding = $vectorizer->embed('your_text')
// Creates a single vector representation from multiple chunks.
$mergedEmbedding = $vectorizer->batchEmbed(['first_chunk', 'second_chunk']);
When you perform vector queries against Redis or load hash data into index that contains vector field data, your vector should be represented as a blob string. VectorHelper allows you to create blob representation from your vector represented as array of floats.
use RedisVentures\RedisVl\VectorHelper;
$blobVector = VectorHelper::toBytes([0.001, 0.002, 0.003]);