Randal7 / libfacedetection

An open source library for face detection in images. The face detection speed can reach 1000FPS.

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

libfacedetection

This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C source files. The source code does not depend on any other libraries. What you need is just a C++ compiler. You can compile the source code under Windows, Linux, ARM and any platform with a C++ compiler.

SIMD instructions are used to speed up the detection. You can enable AVX2 if you use Intel CPU or NEON for ARM.

The model file has also been provided in directory ./models/.

examples/detect-image.cpp and examples/detect-camera.cpp show how to use the library.

The library was trained by libfacedetection.train.

Examples

How to use the code

You can copy the files in directory src/ into your project, and compile them as the other files in your project. The source code is written in standard C/C++. It should be compiled at any platform which support C/C++.

Some tips:

  • Please add -O3 to turn on optimizations when you compile the source code using g++.
  • Please choose 'Maximize Speed/-O2' when you compile the source code using Microsoft Visual Studio.
  • You can enable OpenMP to speedup. But the best solution is to call the detection function in different threads.

If you want to compile and run the example, you can create a build folder first, then run the command:

mkdir build; cd build; cmake ..; make 

Use Tengine to Speedup the detection on ARM

The model has been added to Tengine. Tengine, developed by OPEN AI LAB, is a lite, high-performance, and modular inference engine for embedded device.

The model in Tengine can run faster than the C++ source code here because Tengine has been optimized according to ARM CPU. There are detailed manual and example at Tengine web site: https://github.com/OAID/Tengine/tree/master/examples/YuFaceDetectNet

Cross build for aarch64

  1. Set cross compiler for aarch64 (please refer to aarch64-toolchain.cmake)
  2. Set opencv path since the example code depends on opencv
cmake \
    -DENABLE_NEON=ON \
    -DCMAKE_BUILD_TYPE=RELEASE \
    -DCMAKE_TOOLCHAIN_FILE=../aarch64-toolchain.cmake \
     ..

make

Native build for avx2

cmake \
    -DENABLE_AVX2=ON \
    -DCMAKE_BUILD_TYPE=RELEASE \
    -DDEMO=ON \
     ..

make

CNN-based Face Detection on Windows

Method Time FPS Time FPS
X64 X64 X64 X64
Single-thread Single-thread Multi-thread Multi-thread
cnn (CPU, 640x480) 58.03ms 17.23 13.85ms 72.20
cnn (CPU, 320x240) 14.18ms 70.51 3.38ms 296.21
cnn (CPU, 160x120) 3.25ms 308.15 0.82ms 1226.56
cnn (CPU, 128x96) 2.11ms 474.38 0.52ms 1929.60
  • Minimal face size ~10x10
  • Intel(R) Core(TM) i7-1065G7 CPU

Author

Contributors

Some contributors are listed here.

The contributors who are not listed at GitHub.com:

  • Jia Wu (吴佳)
  • Dong Xu (徐栋)
  • Shengyin Wu (伍圣寅)

Acknowledgment

The work is partly supported by the Science Foundation of Shenzhen (Grant No. JCYJ20150324141711699 and 20170504160426188).

About

An open source library for face detection in images. The face detection speed can reach 1000FPS.

License:Other


Languages

Language:C++ 99.9%Language:CMake 0.0%Language:Kotlin 0.0%Language:Objective-C 0.0%Language:Objective-C++ 0.0%Language:Java 0.0%