The visualization project of the BEV model inference result on NuScenes Dataset, including detBox and trackingLine!
First of all, I need to thank some Github authors! PF-Track | SimpleTrack | StreamPETR
We use Nuscenes v1.0-mini DATASET for example
The green dashed line represents the GT trajectory; solid lines represent predicted objects and trajectories, and the same color represents the same predicted object.
- data/nuscenes/
- v1.0-mini/
- maps/
- samples/
- sweeps/
- v1.0-mini/
- v1.0-mini/
- projects/
- tools/
- SimpleTrack/
You can refer to the PF-Track configuration environment documentation.
Or use the Conda env configuration file we provide.
conda env create -f nuScenesTrajectoryVisualizationTool_env.yaml
as for mot_3d
package,
cd SimpleTrack
pip install -e ./
Like othor bev models, you need to use create_data.py
to create pkl
files for v1.0mini:
tracking_forecasting-mini_infos_train.pkl
tracking_forecasting-mini_infos_val.pkl
python tools/create_data.py nuscenes-tracking --root-path data/nuscenes/v1.0-mini --out-dir data/nuscenes/v1.0-mini --extra-tag tracking_forecasting --version v1.0-mini --forecasting
The final json
data structure should like this, it should be notice that key tracking_id
is necessary.
You can use the code here to prepare the json
file with tracking_id
key from the test result json
file.
tools/camera_visualization.py --result mini_track.json --show-dir work_dirs/cam_visualization/
tools/bev_traj_visualization.py projects/configs/tracking/petr/f3_q500_800x320.py --result mini_track.json --show-dir work_dirs/tracking_visualization/