Osier-Yi / FederatedScope

An easy-to-use federated learning platform

Home Page:https://www.federatedscope.io

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

federatedscope-logo

Website Playground Contributing

FederatedScope is a comprehensive federated learning platform that provides convenient usage and flexible customization for various federated learning tasks in both academia and industry. Based on an event-driven architecture, FederatedScope integrates rich collections of functionalities to satisfy the burgeoning demands from federated learning, and aims to build up an easy-to-use platform for promoting learning safely and effectively.

A detailed tutorial is provided on our website: federatedscope.io

You can try FederatedScope via FederatedScope Playground or Google Colab.

| Code Structure | Quick Start | Advanced | Documentation | Publications | Contributing |

News

  • new [05-17-2023] Our paper FS-REAL has been accepted by KDD'2023!
  • new [05-17-2023] Our benchmark paper for FL backdoor attacks Backdoor Attacks Bench has been accepted by KDD'2023!
  • new [05-17-2023] Our paper Communication Efficient and Differentially Private Logistic Regression under the Distributed Setting has been accepted by KDD'2023!
  • new [04-25-2023] Our paper pFedGate has been accepted by ICML'2023!
  • new [04-25-2023] Our benchmark paper for FedHPO FedHPO-Bench has been accepted by ICML'2023!
  • new [04-03-2023] We release FederatedScope v0.3.0!
  • [02-10-2022] Our paper elaborating on FederatedScope is accepted by VLDB'23!
  • [10-05-2022] Our benchmark paper for personalized FL, pFL-Bench has been accepted by NeurIPS'22, Dataset and Benchmark Track!
  • [08-18-2022] Our KDD 2022 paper on federated graph learning receives the KDD Best Paper Award for ADS track!
  • [07-30-2022] We release FederatedScope v0.2.0!
  • [06-17-2022] We release pFL-Bench, a comprehensive benchmark for personalized Federated Learning (pFL), containing 10+ datasets and 20+ baselines. [code, pdf]
  • [06-17-2022] We release FedHPO-Bench, a benchmark suite for studying federated hyperparameter optimization. [code, pdf]
  • [06-17-2022] We release B-FHTL, a benchmark suit for studying federated hetero-task learning. [code, pdf]
  • [06-13-2022] Our project was receiving an attack, which has been resolved. More details.
  • [05-25-2022] Our paper FederatedScope-GNN has been accepted by KDD'2022!
  • [05-06-2022] We release FederatedScope v0.1.0!

Code Structure

FederatedScope
├── federatedscope
│   ├── core           
│   |   ├── workers              # Behaviors of participants (i.e., server and clients)
│   |   ├── trainers             # Details of local training
│   |   ├── aggregators          # Details of federated aggregation
│   |   ├── configs              # Customizable configurations
│   |   ├── monitors             # The monitor module for logging and demonstrating  
│   |   ├── communication.py     # Implementation of communication among participants   
│   |   ├── fed_runner.py        # The runner for building and running an FL course
│   |   ├── ... ..
│   ├── cv                       # Federated learning in CV        
│   ├── nlp                      # Federated learning in NLP          
│   ├── gfl                      # Graph federated learning          
│   ├── autotune                 # Auto-tunning for federated learning         
│   ├── vertical_fl              # Vartical federated learning         
│   ├── contrib                          
│   ├── main.py           
│   ├── ... ...          
├── scripts                      # Scripts for reproducing existing algorithms
├── benchmark                    # We release several benchmarks for convenient and fair comparisons
├── doc                          # For automatic documentation
├── enviornment                  # Installation requirements and provided docker files
├── materials                    # Materials of related topics (e.g., paper lists)
│   ├── notebook                        
│   ├── paper_list                                        
│   ├── tutorial                                       
│   ├── ... ...                                      
├── tests                        # Unittest modules for continuous integration
├── LICENSE
└── setup.py

Quick Start

We provide an end-to-end example for users to start running a standard FL course with FederatedScope.

Step 1. Installation

First of all, users need to clone the source code and install the required packages (we suggest python version >= 3.9). You can choose between the following two installation methods (via docker or conda) to install FederatedScope.

git clone https://github.com/alibaba/FederatedScope.git
cd FederatedScope

Use Docker

You can build docker image and run with docker env (cuda 11 and torch 1.10):

docker build -f environment/docker_files/federatedscope-torch1.10.Dockerfile -t alibaba/federatedscope:base-env-torch1.10 .
docker run --gpus device=all --rm -it --name "fedscope" -w $(pwd) alibaba/federatedscope:base-env-torch1.10 /bin/bash

If you need to run with down-stream tasks such as graph FL, change the requirement/docker file name into another one when executing the above commands:

# environment/requirements-torch1.10.txt -> 
environment/requirements-torch1.10-application.txt

# environment/docker_files/federatedscope-torch1.10.Dockerfile ->
environment/docker_files/federatedscope-torch1.10-application.Dockerfile

Note: You can choose to use cuda 10 and torch 1.8 via changing torch1.10 to torch1.8. The docker images are based on the nvidia-docker. Please pre-install the NVIDIA drivers and nvidia-docker2 in the host machine. See more details here.

Use Conda

We recommend using a new virtual environment to install FederatedScope:

conda create -n fs python=3.9
conda activate fs

If your backend is torch, please install torch in advance (torch-get-started). For example, if your cuda version is 11.3 please execute the following command:

conda install -y pytorch=1.10.1 torchvision=0.11.2 torchaudio=0.10.1 torchtext=0.11.1 cudatoolkit=11.3 -c pytorch -c conda-forge

For users with Apple M1 chips:

conda install pytorch torchvision torchaudio -c pytorch
# Downgrade torchvision to avoid segmentation fault
python -m pip install torchvision==0.11.3

Finally, after the backend is installed, you can install FederatedScope from source:

From source
# Editable mode
pip install -e .

# Or (developers for dev mode)
pip install -e .[dev]
pre-commit install

Now, you have successfully installed the minimal version of FederatedScope. (Optinal) For application version including graph, nlp and speech, run:

bash environment/extra_dependencies_torch1.10-application.sh

Step 2. Prepare datasets

To run an FL task, users should prepare a dataset. The DataZoo provided in FederatedScope can help to automatically download and preprocess widely-used public datasets for various FL applications, including CV, NLP, graph learning, recommendation, etc. Users can directly specify cfg.data.type = DATASET_NAMEin the configuration. For example,

cfg.data.type = 'femnist'

To use customized datasets, you need to prepare the datasets following a certain format and register it. Please refer to Customized Datasets for more details.

Step 3. Prepare models

Then, users should specify the model architecture that will be trained in the FL course. FederatedScope provides a ModelZoo that contains the implementation of widely adopted model architectures for various FL applications. Users can set up cfg.model.type = MODEL_NAME to apply a specific model architecture in FL tasks. For example,

cfg.model.type = 'convnet2'

FederatedScope allows users to use customized models via registering. Please refer to Customized Models for more details about how to customize a model architecture.

Step 4. Start running an FL task

Note that FederatedScope provides a unified interface for both standalone mode and distributed mode, and allows users to change via configuring.

Standalone mode

The standalone mode in FederatedScope means to simulate multiple participants (servers and clients) in a single device, while participants' data are isolated from each other and their models might be shared via message passing.

Here we demonstrate how to run a standard FL task with FederatedScope, with setting cfg.data.type = 'FEMNIST'and cfg.model.type = 'ConvNet2' to run vanilla FedAvg for an image classification task. Users can customize training configurations, such as cfg.federated.total_round_num, cfg.dataloader.batch_size, and cfg.train.optimizer.lr, in the configuration (a .yaml file), and run a standard FL task as:

# Run with default configurations
python federatedscope/main.py --cfg scripts/example_configs/femnist.yaml
# Or with custom configurations
python federatedscope/main.py --cfg scripts/example_configs/femnist.yaml federate.total_round_num 50 dataloader.batch_size 128

Then you can observe some monitored metrics during the training process as:

INFO: Server has been set up ...
INFO: Model meta-info: <class 'federatedscope.cv.model.cnn.ConvNet2'>.
... ...
INFO: Client has been set up ...
INFO: Model meta-info: <class 'federatedscope.cv.model.cnn.ConvNet2'>.
... ...
INFO: {'Role': 'Client #5', 'Round': 0, 'Results_raw': {'train_loss': 207.6341676712036, 'train_acc': 0.02, 'train_total': 50, 'train_loss_regular': 0.0, 'train_avg_loss': 4.152683353424072}}
INFO: {'Role': 'Client #1', 'Round': 0, 'Results_raw': {'train_loss': 209.0940284729004, 'train_acc': 0.02, 'train_total': 50, 'train_loss_regular': 0.0, 'train_avg_loss': 4.1818805694580075}}
INFO: {'Role': 'Client #8', 'Round': 0, 'Results_raw': {'train_loss': 202.24929332733154, 'train_acc': 0.04, 'train_total': 50, 'train_loss_regular': 0.0, 'train_avg_loss': 4.0449858665466305}}
INFO: {'Role': 'Client #6', 'Round': 0, 'Results_raw': {'train_loss': 209.43883895874023, 'train_acc': 0.06, 'train_total': 50, 'train_loss_regular': 0.0, 'train_avg_loss': 4.1887767791748045}}
INFO: {'Role': 'Client #9', 'Round': 0, 'Results_raw': {'train_loss': 208.83140087127686, 'train_acc': 0.0, 'train_total': 50, 'train_loss_regular': 0.0, 'train_avg_loss': 4.1766280174255375}}
INFO: ----------- Starting a new training round (Round #1) -------------
... ...
INFO: Server: Training is finished! Starting evaluation.
INFO: Client #1: (Evaluation (test set) at Round #20) test_loss is 163.029045
... ...
INFO: Server: Final evaluation is finished! Starting merging results.
... ...

Distributed mode

The distributed mode in FederatedScope denotes running multiple procedures to build up an FL course, where each procedure plays as a participant (server or client) that instantiates its model and loads its data. The communication between participants is already provided by the communication module of FederatedScope.

To run with distributed mode, you only need to:

  • Prepare isolated data file and set up cfg.data.file_path = PATH/TO/DATA for each participant;
  • Change cfg.federate.model = 'distributed', and specify the role of each participant by cfg.distributed.role = 'server'/'client'.
  • Set up a valid address by cfg.distribute.server_host/client_host = x.x.x.x and cfg.distribute.server_port/client_port = xxxx. (Note that for a server, you need to set up server_host and server_port for listening messages, while for a client, you need to set up client_host and client_port for listening as well as server_host and server_port for joining in an FL course)

We prepare a synthetic example for running with distributed mode:

# For server
python federatedscope/main.py --cfg scripts/distributed_scripts/distributed_configs/distributed_server.yaml data.file_path 'PATH/TO/DATA' distribute.server_host x.x.x.x distribute.server_port xxxx

# For clients
python federatedscope/main.py --cfg scripts/distributed_scripts/distributed_configs/distributed_client_1.yaml data.file_path 'PATH/TO/DATA' distribute.server_host x.x.x.x distribute.server_port xxxx distribute.client_host x.x.x.x distribute.client_port xxxx
python federatedscope/main.py --cfg scripts/distributed_scripts/distributed_configs/distributed_client_2.yaml data.file_path 'PATH/TO/DATA' distribute.server_host x.x.x.x distribute.server_port xxxx distribute.client_host x.x.x.x distribute.client_port xxxx
python federatedscope/main.py --cfg scripts/distributed_scripts/distributed_configs/distributed_client_3.yaml data.file_path 'PATH/TO/DATA' distribute.server_host x.x.x.x distribute.server_port xxxx distribute.client_host x.x.x.x distribute.client_port xxxx

An executable example with generated toy data can be run with (a script can be found in scripts/run_distributed_lr.sh):

# Generate the toy data
python scripts/distributed_scripts/gen_data.py

# Firstly start the server that is waiting for clients to join in
python federatedscope/main.py --cfg scripts/distributed_scripts/distributed_configs/distributed_server.yaml data.file_path toy_data/server_data distribute.server_host 127.0.0.1 distribute.server_port 50051

# Start the client #1 (with another process)
python federatedscope/main.py --cfg scripts/distributed_scripts/distributed_configs/distributed_client_1.yaml data.file_path toy_data/client_1_data distribute.server_host 127.0.0.1 distribute.server_port 50051 distribute.client_host 127.0.0.1 distribute.client_port 50052
# Start the client #2 (with another process)
python federatedscope/main.py --cfg scripts/distributed_scripts/distributed_configs/distributed_client_2.yaml data.file_path toy_data/client_2_data distribute.server_host 127.0.0.1 distribute.server_port 50051 distribute.client_host 127.0.0.1 distribute.client_port 50053
# Start the client #3 (with another process)
python federatedscope/main.py --cfg scripts/distributed_scripts/distributed_configs/distributed_client_3.yaml data.file_path toy_data/client_3_data distribute.server_host 127.0.0.1 distribute.server_port 50051 distribute.client_host 127.0.0.1 distribute.client_port 50054

And you can observe the results as (the IP addresses are anonymized with 'x.x.x.x'):

INFO: Server: Listen to x.x.x.x:xxxx...
INFO: Server has been set up ...
Model meta-info: <class 'federatedscope.core.lr.LogisticRegression'>.
... ...
INFO: Client: Listen to x.x.x.x:xxxx...
INFO: Client (address x.x.x.x:xxxx) has been set up ...
Client (address x.x.x.x:xxxx) is assigned with #1.
INFO: Model meta-info: <class 'federatedscope.core.lr.LogisticRegression'>.
... ...
{'Role': 'Client #2', 'Round': 0, 'Results_raw': {'train_avg_loss': 5.215108394622803, 'train_loss': 333.7669372558594, 'train_total': 64}}
{'Role': 'Client #1', 'Round': 0, 'Results_raw': {'train_total': 64, 'train_loss': 290.9668884277344, 'train_avg_loss': 4.54635763168335}}
----------- Starting a new training round (Round #1) -------------
... ...
INFO: Server: Training is finished! Starting evaluation.
INFO: Client #1: (Evaluation (test set) at Round #20) test_loss is 30.387419
... ...
INFO: Server: Final evaluation is finished! Starting merging results.
... ...

Advanced

As a comprehensive FL platform, FederatedScope provides the fundamental implementation to support requirements of various FL applications and frontier studies, towards both convenient usage and flexible extension, including:

  • Personalized Federated Learning: Client-specific model architectures and training configurations are applied to handle the non-IID issues caused by the diverse data distributions and heterogeneous system resources.
  • Federated Hyperparameter Optimization: When hyperparameter optimization (HPO) comes to Federated Learning, each attempt is extremely costly due to multiple rounds of communication across participants. It is worth noting that HPO under the FL is unique and more techniques should be promoted such as low-fidelity HPO.
  • Privacy Attacker: The privacy attack algorithms are important and convenient to verify the privacy protection strength of the design FL systems and algorithms, which is growing along with Federated Learning.
  • Graph Federated Learning: Working on the ubiquitous graph data, Graph Federated Learning aims to exploit isolated sub-graph data to learn a global model, and has attracted increasing popularity.
  • Recommendation: As a number of laws and regulations go into effect all over the world, more and more people are aware of the importance of privacy protection, which urges the recommender system to learn from user data in a privacy-preserving manner.
  • Differential Privacy: Different from the encryption algorithms that require a large amount of computation resources, differential privacy is an economical yet flexible technique to protect privacy, which has achieved great success in database and is ever-growing in federated learning.
  • ...

More supports are coming soon! We have prepared a tutorial to provide more details about how to utilize FederatedScope to enjoy your journey of Federated Learning!

Materials of related topics are constantly being updated, please refer to FL-Recommendation, Federated-HPO, Personalized FL, Federated Graph Learning, FL-NLP, FL-Attacker, FL-Incentive-Mechanism, FL-Fairness and so on.

Documentation

The classes and methods of FederatedScope have been well documented so that users can generate the API references by:

cd doc
pip install -r requirements.txt
make html

NOTE:

  • The doc/requirements.txt is only for documentation of API by Sphinx, which can be automatically generated by Github actions .github/workflows/sphinx.yml. (Trigger by pull request if DOC in the title.)
  • Download via Artifacts in Github actions.

We put the API references on our website.

Besides, we provide documents for executable scripts and customizable configurations.

License

FederatedScope is released under Apache License 2.0.

Publications

If you find FederatedScope useful for your research or development, please cite the following paper:

@article{federatedscope,
  title = {FederatedScope: A Flexible Federated Learning Platform for Heterogeneity},
  author = {Xie, Yuexiang and Wang, Zhen and Gao, Dawei and Chen, Daoyuan and Yao, Liuyi and Kuang, Weirui and Li, Yaliang and Ding, Bolin and Zhou, Jingren},
  journal={Proceedings of the VLDB Endowment},
  volume={16},
  number={5},
  pages={1059--1072},
  year={2023}
}

More publications can be found in the Publications.

Contributing

We greatly appreciate any contribution to FederatedScope! We provide a developer version of FederatedScope with additional pre-commit hooks to perform commit checks compared to the official version:

# Install the developer version
pip install -e .[dev]
pre-commit install

# Or switch to the developer version from the official version
pip install pre-commit
pre-commit install
pre-commit run --all-files

You can refer to Contributing to FederatedScope for more details.

Welcome to join in our Slack channel, or DingDing group (please scan the following QR code) for discussion.

federatedscope-logo

About

An easy-to-use federated learning platform

https://www.federatedscope.io

License:Apache License 2.0


Languages

Language:Python 91.6%Language:Shell 5.4%Language:Jupyter Notebook 2.4%Language:Dockerfile 0.7%