Qibaba's repositories

Restormer-1

A PyTorch implementation of Restormer based on CVPR 2022 paper "Restormer: Efficient Transformer for High-Resolution Image Restoration"

Stargazers:0Issues:0Issues:0

mathlib

Lean mathematical components library

License:Apache-2.0Stargazers:0Issues:0Issues:0

rocBLAS

Next generation BLAS implementation for ROCm platform

License:NOASSERTIONStargazers:0Issues:0Issues:0

contentvec

speech self-supervised representations

Stargazers:0Issues:0Issues:0

chinese_speech_pretrain

chinese speech pretrained models

Stargazers:0Issues:0Issues:0

jax

Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

License:Apache-2.0Stargazers:0Issues:0Issues:0

openspeech

Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

License:MITStargazers:0Issues:0Issues:0

sherpa

Streaming and non-streaming ASR server in Python

License:NOASSERTIONStargazers:0Issues:0Issues:0

kaldifeat

Kaldi-compatible online & offline feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd - Provide C++ & Python API

License:NOASSERTIONStargazers:0Issues:0Issues:0

CppCoreGuidelines

The C++ Core Guidelines are a set of tried-and-true guidelines, rules, and best practices about coding in C++

License:NOASSERTIONStargazers:0Issues:0Issues:0

lhotse

Tools for handling speech data in machine learning projects.

License:Apache-2.0Stargazers:0Issues:0Issues:0

kaldilm

Python wrapper for kaldi's arpa2fst

License:NOASSERTIONStargazers:0Issues:0Issues:0

SpeechSplit2

Official implementation of SpeechSplit2

Stargazers:0Issues:0Issues:0

CDFSE_FastSpeech2

The Official Implementation of “Content-Dependent Fine-Grained Speaker Embedding for Zero-Shot Speaker Adaptation in Text-to-Speech Synthesis”

License:MITStargazers:1Issues:0Issues:0

CLBlast

Tuned OpenCL BLAS

License:Apache-2.0Stargazers:0Issues:0Issues:0

wespeaker

Production First and Production Ready Speaker Recognition Toolkit

License:Apache-2.0Stargazers:0Issues:0Issues:0

3m-asr

3M: Multi-loss, Multi-path and Multi-level Neural Networks for speech recognition

License:Apache-2.0Stargazers:0Issues:0Issues:0

Efficient-Segmentation-Networks

Lightweight models for real-time semantic segmentationon PyTorch (include SQNet, LinkNet, SegNet, UNet, ENet, ERFNet, EDANet, ESPNet, ESPNetv2, LEDNet, ESNet, FSSNet, CGNet, DABNet, Fast-SCNN, ContextNet, FPENet, etc.)

License:MITStargazers:0Issues:0Issues:0

voice_activity_detection

Voice Activity Detection based on Deep Learning & TensorFlow

License:GPL-3.0Stargazers:0Issues:0Issues:0

kaldi-onnx

Kaldi model converter to ONNX

License:Apache-2.0Stargazers:0Issues:0Issues:0
License:NOASSERTIONStargazers:0Issues:0Issues:0

server

The Triton Inference Server provides an optimized cloud and edge inferencing solution.

License:BSD-3-ClauseStargazers:0Issues:0Issues:0

SimCLUE

大规模语义理解与匹配数据集。可用于无监督对比学习、半监督学习等构建中文领域效果最好的预训练模型

Stargazers:0Issues:0Issues:0

ssr_eval

Evaluation and Benchmarking of Speech Super-resolution Methods

Stargazers:0Issues:0Issues:0

DeepFaceLive

Real-time face swap for PC streaming or video calls

License:GPL-3.0Stargazers:0Issues:0Issues:0

QA-Survey-CN

北京航空航天大学大数据高精尖中心自然语言处理研究团队开展了智能问答的研究与应用总结。包括基于知识图谱的问答(KBQA),基于文本的问答系统(TextQA),基于表格的问答系统(TableQA)、基于视觉的问答系统(VisualQA)和机器阅读理解(MRC)等,每类任务分别对学术界和工业界进行了相关总结。

Stargazers:0Issues:0Issues:0

awesome-semantic-segmentation-pytorch

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

License:Apache-2.0Stargazers:0Issues:0Issues:0

Squeezeformer

PyTorch implementation of "Squeezeformer: An Efficient Transformer for Automatic Speech Recognition"

License:Apache-2.0Stargazers:0Issues:0Issues:0

kaldi_native_io

python wrapper for kaldi's native I/O

License:NOASSERTIONStargazers:0Issues:0Issues:0

External-Attention-pytorch

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

License:MITStargazers:0Issues:0Issues:0