NeurAI-Lab / SYNERgy

The official PyTorch code for CoLLAs 2022 paper "SYNERgy between SYNaptic consolidation and Experience Replay for general continual learning"

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

SYNERgy

Official Repository for CoLLAs 2022 paper "SYNERgy between SYNaptic consolidation and Experience Replay for general continual learning".

We extended the CLS-ER repo with our method (SYNERgy).

Setup

  • Use python main.py to run experiments.
  • Use argument --load_best_args to use the best hyperparameters for each of the evaluation setting from the paper.
  • To reproduce the results for SYNERgy in the paper run the following python main.py --dataset <dataset> --model synergy --buffer_size <buffer_size> --load_best_args

Examples:

python main.py --dataset rot-mnist --model synergy --buffer_size 500 --load_best_args

python main.py --dataset seq-cifar10 --model synergy --buffer_size 500 --load_best_args

python main.py --dataset seq-tinyimg --model synergy --buffer_size 500 --load_best_args

python main.py --dataset gcil-cifar100 --weight_dist unif --model synergy --load_best_args

python main.py --dataset gcil-cifar100 --weight_dist longtail --model synergy --load_best_args

Requirements

  • torch==1.7.0

  • torchvision==0.9.0

  • quadprog==0.1.7

Cite Our Work

If you find the code useful in your research, please consider citing our paper:

@InProceedings{pmlr-v199-sarfraz22a,
   title = {SYNERgy between SYNaptic Consolidation and Experience Replay for General Continual Learning},
   author = {Sarfraz, Fahad and Arani, Elahe and Zonooz, Bahram},
   booktitle = {Proceedings of The 1st Conference on Lifelong Learning Agents},
   pages = {920--936},
   year = {2022},
   editor = {Chandar, Sarath and Pascanu, Razvan and Precup, Doina},
   volume = {199},
   series = {Proceedings of Machine Learning Research},
   month = {22--24 Aug},
   publisher = {PMLR},
   pdf = {https://proceedings.mlr.press/v199/sarfraz22a/sarfraz22a.pdf},
   url = {https://proceedings.mlr.press/v199/sarfraz22a.html},
}

About

The official PyTorch code for CoLLAs 2022 paper "SYNERgy between SYNaptic consolidation and Experience Replay for general continual learning"

License:MIT License


Languages

Language:Python 100.0%