-
It is using cookiecutter
-
Run the following command to create a new project in this template. It will prompt a CLI and fill it with your information.
cookiecutter https://github.com/MuhammedBuyukkinaci/Clean-Data-Science-Project-Template.git├── data
│ ├── external <- Data from third party sources.
│ ├── final <- Final data to be used in training.
│ ├── processed <- The intermediate data.
│ └── raw <- The original, immutable data dump.
│
├── models <- Trained models anc checkpoints.
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering) and description.
│
├── requirements_dev.txt <- The requirements file for development env e.g.
│ generated with `pip freeze > requirements_dev.txt`.
├── requirements_prod.txt <- The requirements file for production env e.g.
│ generated with `pip freeze > requirements_prod.txt`.
│
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module.
│ │
│ ├── data <- Scripts to download or generate data.
│ │ ├── prepare_data.py <- Preparing data for training.
| | └── __init__.py <- Making the folder a package.
│ │
│ ├── features <- Scripts to turn raw data into features for modeling.
│ │ ├── generate_features.py <- Creating features for training.
│ │ └── __init__.py <- Making the folder a package.
│ │
│ ├── training <- Scripts to train models
│ │ ├── train.py <- A script to train model
│ │ └── __init__.py <- Making the folder a package.
│ │
│ └── evaluation <- Model Validation and evaluation things
│ ├── test.py <- A script to train model
│ └── __init__.py <- Making the folder a package.
│
│
└── README.md <- The top-level README for developers using this project.