# MilesCranmer / SymbolicRegression.jl

Distributed High-Performance symbolic regression in Julia

Geek Repo

Github PK Tool

# SymbolicRegression.jl

Latest release Documentation Build status Coverage

Distributed High-Performance symbolic regression in Julia.

Check out PySR for a Python frontend.

Cite this software

# Quickstart

Install in Julia with:

```using Pkg

The heart of this package is the `EquationSearch` function, which takes a 2D array (shape [features, rows]) and attempts to model a 1D array (shape [rows]) using analytic functional forms.

Run distributed on four processes with:

```using SymbolicRegression

X = randn(Float32, 5, 100)
y = 2 * cos.(X[4, :]) + X[1, :] .^ 2 .- 2

options = SymbolicRegression.Options(
binary_operators=(+, *, /, -),
unary_operators=(cos, exp),
npopulations=20
)

hall_of_fame = EquationSearch(X, y, niterations=40, options=options, numprocs=4)```

We can view the equations in the dominating Pareto frontier with:

`dominating = calculate_pareto_frontier(X, y, hall_of_fame, options)`

We can convert the best equation to SymbolicUtils.jl with the following function:

```eqn = node_to_symbolic(dominating[end].tree, options)
println(simplify(eqn*5 + 3))```

We can also print out the full pareto frontier like so:

```println("Complexity\tMSE\tEquation")

for member in dominating
complexity = compute_complexity(member.tree, options)
loss = member.loss
string = string_tree(member.tree, options)

println("\$(complexity)\t\$(loss)\t\$(string)")
end```