Fariborz Teherkhani, Aashish Rai*, Shaunak Srivastava*, Quankai Gao*, Xuanbai Chen, Fernando de la Torre, Steven Song, Aayush Prakash, Daeil Kim (* equal contribution)
This is the official Pytorch implementation of the paper.
[Project Page] [Video] [Colab Demo] [Arxiv]
Download pre-trained weights and put the "checkpoints" folder in the main directory. [Link]
-
Generate 3D Faces (mesh and texture)
python generate_faces.py
-
Generate meshes only
python test_gan3d.py
-
Generate textures only
python test_texture.py
- Download Facescape dataset and specify path to the "facescape_trainset" folder.
python preprocess_traindata.py
-
Shape
Train AE python train_ae.py
Generate Reduced Data python gen_reduced_data.py
Train GAN python train_gan3d.py
-
Texture
Train P-GAN python train_texture.py --init_step 1 --batch_size 128
The code is available under MIT License. Please read the license terms available at [Link]
If you use find this paper/code useful, please consider citing:
@misc{taherkhani2022controllable,
title={Controllable 3D Generative Adversarial Face Model via Disentangling Shape and Appearance},
author={Fariborz Taherkhani and Aashish Rai and Quankai Gao and Shaunak Srivastava and Xuanbai Chen and Fernando de la Torre and Steven Song and Aayush Prakash and Daeil Kim},
year={2022},
eprint={2208.14263},
archivePrefix={arXiv},
primaryClass={cs.CV}
}