种群算法复现,由于已由大佬开发了种群算法的第三方库,包括退火算法(SA)、粒子群算法(PSO)、人工免疫算法(IA)、遗传算法(GA)、差分进化算法(DE)、人工鱼群算法(AFSA)、蚁群算法(ACA),标*1的表示从中copy过来的,但是删除了其中部分带有约束的部分,所以如果需要带有约束的原始算法可以去大佬开发的种群算法的第三方库。另一个已有的第三方种群算法库包括布谷鸟搜索算法(CS)、萤火虫算法(FA2009)、灰狼算法(GWO)、鲸鱼算法(WOA)、人工蜂群算法(ABC),标*2的表示从中copy过来的。如有冒犯或者侵权,可联系删除。此仓库新增了二者没有一些种群算法。 可安装此第三方库调用此仓库已复现种群算法,若有问题,可随时联系。
pip install swarm-algorithm
遗传算法(DA)、差分进化算法(DE)、粒子群算法(PSO*11995)、狼群搜索算法(WPS2007, WPA2013)、引力搜索算法(GSA2009)、烟花算法(FA2010)、乌鸦搜索(CSA2016)、正余弦优化算法(CSA2016)、樽海鞘群算法(SSA2017)、缎蓝园丁鸟优化算法(SBO2017)、麻雀搜索算法(SSA2020)
Kennedy J, Eberhart R. Particle swarm optimization[C]// Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, 27 Nov.-1 Dec. 1995.4: 1942-8 vol.4.
import swarm-algorithm
pso = swarm-algorithm.PSO(func, n_dim=20, pop=40, max_iter=150, lb=-1e5, ub=1e5, w=0.8, c1=0.5, c2=0.5)
# n_dim : 变量维数
# pop : 种群数量
# max_iter : 最大迭代次数
# lb : 变量下界,维数为n_dim的列表
# ub : 变量上届,维数为n_dim的列表
# w、c1、c2 : 粒子更新规则的相关参数
n_dim = 30
lb = [-100 for i in range(n_dim)]
ub = [100 for i in range(n_dim)]
demo_func = test_function.fu2
pop_size = 100
max_iter = 1000
pso = PSO(func=demo_func, n_dim=n_dim, pop=100, max_iter=1000, lb=lb, ub=ub, w=0.8, c1=0.5, c2=0.5)
best_x, bext_y = pso.run()
print(f'{demo_func(pso.gbest_x)}\t{pso.gbest_x}')
Yang C, Tu X, Chen J. Algorithm of Marriage in Honey Bees Optimization Based on the Wolf Pack Search, Jeju Island, Korea, 2007: 462-7.
Rashedi E., Nezamabadi-Pour H., Saryazdi S. GSA: A Gravitational Search Algorithm[J]. Information Sciences, 2009, 179(13): 2232-48.
Tan Y, Zhu Y. Fireworks Algorithm for Optimization[M]. // Lecture Notes in Computer Science. City: Springer Berlin Heidelberg, 2010: 355-64[2021-12-08T08:42:21].
吴虎胜, 张凤鸣, 吴庐山. 一种新的群体智能算法——狼群算法[J]. 系统工程与电子技术, 2013, 35(11): 2430-8.
New swarm intelligence algorithm--wolf pack algorithm
Askarzadeh A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm[J]. Computers & Structures, 2016, 169: 1-12.
Mirjalili S, Gandomi A H, Mirjalili S Z, et al. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-91.
Mirjalili S. SCA: A Sine Cosine Algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-33.
Samareh Moosavi S H, Khatibi Bardsiri V. Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development effort estimation[J]. Engineering Applications of Artificial Intelligence, 2017, 60: 1-15.
Xue J, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.