This repository contains a diffusion pipeline for interpolating image embeddings using polynomial interpolation between two images or an image_embeddings
tensor. The pipeline leverages the UnCLIPImageVariationPipeline
from the Hugging Faces Diffusers library to achieve image interpolation with control over interpolation strength (--interpolation_factor
) and the number of interpolation steps (--steps
).
Input Image | Interpolated Image |
---|---|
Input Image | Interpolated Image |
---|---|
GitHub Repository: https://github.com/Limbicnation/UnCLIP-Interp-Pipeline.git
- Create and activate a new conda environment:
conda create -n unclip-interp python=3.10
conda activate unclip-interp
Clone the 'diffusers' repository:
git clone https://github.com/huggingface/diffusers.git
Install additional dependencies:
pip install numpy
pip install transformers diffusers
Update 'diffusers' to the latest version:
pip install --upgrade diffusers
Install 'diffusers' with PyTorch support:
pip install --upgrade diffusers[torch]
Run the UnCLIP interpolation script:
python unclip_interpolation.py --xformers 🔥
Run the UnCLIP interpolation script with arguments:
python unclip_interpolation_copy.py --interpolation_factor 0.75
python unclip_interpolation_copy.py --interpolation_factor 0.5 --steps 8
Run the image upscaling pipeline:
python image_upscaling_pipeline.py
Define images for interpolation in the 'output' folder. Enjoy exploring UnCLIP-Interp!
Please make sure to adapt the instructions to your specific needs if required.
- Add RIFE interapolation
- Add Real-ESRGAN