create yourself dataset for tensorflow
test code
getTrianList()
dataroad = "/Users/zhuxiaoxiansheng/Desktop/Yaledata.txt"
outputdir = "/Users/zhuxiaoxiansheng/Desktop/Yaledata"
trainroad = trans2tfRecord(dataroad,outputdir)
traindata,trainlabel = read_tfRecord(trainroad)
image_batch,label_batch = tf.train.shuffle_batch([traindata,trainlabel],
batch_size=100,capacity=2000,min_after_dequeue = 1000)
with tf.Session() as sess:
sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess,coord = coord)
train_steps = 10
# Retrieve a single instance:
try:
while not coord.should_stop():
example,label = sess.run([image_batch,label_batch])
print(example.shape,label)
train_steps -= 1
print(train_steps)
if train_steps <= 0:
coord.request_stop()
except tf.errors.OutOfRangeError:
print ('Done training -- epoch limit reached')
finally:
# When done, ask the threads to stop.
coord.request_stop()
# And wait for them to actually do it.
coord.join(threads)
output