LPAIS / ABINet

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

The official code of ABINet (CVPR 2021, Oral).

ABINet uses a vision model and an explicit language model to recognize text in the wild, which are trained in end-to-end way. The language model (BCN) achieves bidirectional language representation in simulating cloze test, additionally utilizing iterative correction strategy.

framework

Runtime Environment

  • We provide a pre-built docker image using the Dockerfile from docker/Dockerfile

  • Running in Docker

    $ git@github.com:FangShancheng/ABINet.git
    $ docker run --gpus all --rm -ti --ipc=host -v $(pwd)/ABINet:/app fangshancheng/fastai:torch1.1 /bin/bash
    
  • (Untested) Or using the dependencies

    pip install -r requirements.txt
    

Datasets

  • Training datasets

    1. MJSynth (MJ):
    2. SynthText (ST):
    3. WikiText103, which is only used for pre-trainig language models:
  • Evaluation datasets, LMDB datasets can be downloaded from BaiduNetdisk(passwd:1dbv), GoogleDrive.

    1. ICDAR 2013 (IC13)
    2. ICDAR 2015 (IC15)
    3. IIIT5K Words (IIIT)
    4. Street View Text (SVT)
    5. Street View Text-Perspective (SVTP)
    6. CUTE80 (CUTE)
  • The structure of data directory is

    data
    ├── charset_36.txt
    ├── evaluation
    │   ├── CUTE80
    │   ├── IC13_857
    │   ├── IC15_1811
    │   ├── IIIT5k_3000
    │   ├── SVT
    │   └── SVTP
    ├── training
    │   ├── MJ
    │   │   ├── MJ_test
    │   │   ├── MJ_train
    │   │   └── MJ_valid
    │   └── ST
    ├── WikiText-103.csv
    └── WikiText-103_eval_d1.csv
    

Pretrained Models

Get the pretrained models from BaiduNetdisk(passwd:kwck), GoogleDrive. Performances of the pretrained models are summaried as follows:

Model IC13 SVT IIIT IC15 SVTP CUTE AVG
ABINet-SV 97.1 92.7 95.2 84.0 86.7 88.5 91.4
ABINet-LV 97.0 93.4 96.4 85.9 89.5 89.2 92.7

Training

  1. Pre-train vision model
    CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config=configs/pretrain_vision_model.yaml
    
  2. Pre-train language model
    CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config=configs/pretrain_language_model.yaml
    
  3. Train ABINet
    CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config=configs/train_abinet.yaml
    

Note:

  • You can set the checkpoint path for vision and language models separately for specific pretrained model, or set to None to train from scratch

Evaluation

CUDA_VISIBLE_DEVICES=0 python main.py --config=configs/train_abinet.yaml --phase test --image_only

Additional flags:

  • --checkpoint /path/to/checkpoint set the path of evaluation model
  • --test_root /path/to/dataset set the path of evaluation dataset
  • --model_eval [alignment|vision] which sub-model to evaluate
  • --image_only disable dumping visualization of attention masks

Visualization

Successful and failure cases on low-quality images:

cases

Citation

If you find our method useful for your reserach, please cite

@article{fang2021read,
  title={Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition},
  author={Fang, Shancheng and Xie, Hongtao and Wang, Yuxin and Mao, Zhendong and Zhang, Yongdong},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

License

This project is only free for academic research purposes, licensed under the 2-clause BSD License - see the LICENSE file for details.

Feel free to contact fangsc@ustc.edu.cn if you have any questions.

About

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

License:Other


Languages

Language:Jupyter Notebook 95.1%Language:Python 4.9%Language:Dockerfile 0.0%