KingsleyHsu / SMPLP

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Simple Message Passing for Link Prediction (SMPLP)

Support five message passing and two with JKnet: SAGE, LRGA, GCN, SGC, TAGC, SGC+JKnet, SAGE+JKnet

SAGE LRGA GCN SGC TAGC JKnet

Support five link prediction methods: MLP/Dot/Bilinear Dot/MLP Cat/MLP Bilinear

Environment:

  • Dependencies:
python==3.8
torch==1.10.1+cu102
torch-geometric==2.0.4
ogb==1.3.4
  • GPU: Tesla V100 (32GB)

OGB Dateset:

The dataset ogbl-vessel can be download and placed in ./dataset/ogbl_vessel/.

The dataset ogbl-collab can be download and placed in ./dataset/ogbl-collab/.

Results on OGB Challenges

Performance on ogbl-vessel (10 runs):

Methods Test Acc Valid Acc Hardware
TAGConv (1-layers) 51.19 ± 1.74 51.20 ± 1.75 Tesla A100(80GB)
LRGA (1-layers) 54.15 ± 4.37 54.18 ± 4.39 Tesla A100(80GB)
SGC (3-layers) 54.31 ± 23.79 54.33 ± 23.89 Tesla V100(32GB)
SGC (3-layers w/o normalize) 50.09 ± 0.11 50.10 ± 0.11 Tesla V100(32GB)
python gnn.py --encoder='sgc' --decoder='mlp' --hidden_channels=16 --device=1  --lr=1e-6  --num_layers=3   --epochs=80

ogbl-collab

Performance on ogbl-collab (10 runs):

Methods Test Hits@50 Valid Hits@50
LRGA (1-layers) 0.6909 ± 0.0055 1.0000 ± 0.0000

Reference

[1] https://github.com/snap-stanford/ogb/tree/master/examples/linkproppred/vessel

[2] https://github.com/zhitao-wang/PLNLP

[3] https://github.com/omri1348/LRGA

About


Languages

Language:Python 100.0%