Support five message passing and two with JKnet: SAGE, LRGA, GCN, SGC, TAGC, SGC+JKnet, SAGE+JKnet
Support five link prediction methods: MLP/Dot/Bilinear Dot/MLP Cat/MLP Bilinear
- Dependencies:
python==3.8
torch==1.10.1+cu102
torch-geometric==2.0.4
ogb==1.3.4
- GPU: Tesla V100 (32GB)
The dataset ogbl-vessel can be download and placed in ./dataset/ogbl_vessel/
.
The dataset ogbl-collab can be download and placed in ./dataset/ogbl-collab/
.
Performance on ogbl-vessel (10 runs):
Methods | Test Acc | Valid Acc | Hardware |
---|---|---|---|
TAGConv (1-layers) | 51.19 ± 1.74 | 51.20 ± 1.75 | Tesla A100(80GB) |
LRGA (1-layers) | 54.15 ± 4.37 | 54.18 ± 4.39 | Tesla A100(80GB) |
SGC (3-layers) | 54.31 ± 23.79 | 54.33 ± 23.89 | Tesla V100(32GB) |
SGC (3-layers w/o normalize) | 50.09 ± 0.11 | 50.10 ± 0.11 | Tesla V100(32GB) |
python gnn.py --encoder='sgc' --decoder='mlp' --hidden_channels=16 --device=1 --lr=1e-6 --num_layers=3 --epochs=80
Performance on ogbl-collab (10 runs):
Methods | Test Hits@50 | Valid Hits@50 |
---|---|---|
LRGA (1-layers) | 0.6909 ± 0.0055 | 1.0000 ± 0.0000 |
[1] https://github.com/snap-stanford/ogb/tree/master/examples/linkproppred/vessel