HusseinLakkis01 / scCoAnnotate

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

scCoAnnotate

Summary

scRNA-seq based prediction of cell-types using a fast and efficient Snakemake pipeline to increase automation and reduce the need to run several scripts and experiments. The pipeline allows the user to select what single-cell annotation tools they want to run on a selected reference to annotate a list of query datasets. It then outputs a consensus of the predictions across tools selected. This pipeline trains classifiers on genes common to the reference and all query datasets.

The pipeline also features parallelization options to exploit the computational resources available.

Installation and Dependencies

Install Snakemake in your linux environment.

You need to have have R Version 4.0.5 and Python 3.6.5.

$ conda activate base
$ mamba create -c conda-forge -c bioconda -n snakemake snakemake

You need to also install all the dependancies for the tools you plan on using. You have to copy everything present in this repository and not break paths because it would disrupt the dependancies. One note is to change the paths in run_ACTINN.py to match your own directories when you clone the repository. The paths are in lines 44,45,49.

Current version of snakemake is snakemake/5.32.0

Quickstart

Using snakemake is straight forward and simple. The rules and processes are arranged as per this rule graph:

Rule preprocess gets the common genes and creates temporary reference and query datasets based ob the common genes. Rule concat appends all predictions into one tab seperate file (prediction_summary.tsv) and gets the consensus prediction

dag

You need to set everything up in a config file and then run the following command:

snakemake --use-conda --configfile config.yml --cores 3

Config File:

# target directory
output_dir: <path to outputs directory>
# path to reference to train classifiers on (cell x gene raw counts)
training_reference: <path to reference csv file with RAW counts per cell, genes as columns and cells as rows>
# path to annotations for the reference (csv file with cellname and label headers)
reference_annotations: <csv with labels per cell, the column header for the labels should be "label">
# path to query datasets (cell x gene raw counts)
query_datasets:
      - <path to query csv file 1 with RAW counts per cell, genes as columns and cells as rows>
      - <path to query csv file 2 with RAW counts per cell, genes as columns and cells as rows>
      .
      .
# step to check if required genes are kept between query and reference
check_genes: False
# path for the genes required
genes_required: Null
# rejection option for SVM
rejection: True
# classifiers to run
tools_to_run:
      - <tool 1>
      - <tool 2>
      .
      .
# benchmark tools on reference
benchmark: False
plots: True
consensus:
      - <tool 1>
      - <tool 2>
      .

An Example Config is attached

# target directory
output_dir: /project/kleinman/hussein.lakkis/from_hydra/test
# path to reference to train classifiers on (cell x gene raw counts)
training_reference: /project/kleinman/hussein.lakkis/from_hydra/2022_01_10-Datasets/Cortex/p0/expression.csv
# path to annotations for the reference (csv file with cellname and label headers)
reference_annotations: /project/kleinman/hussein.lakkis/from_hydra/2022_01_10-Datasets/Cortex/p0/labels.csv
# path to query datasets (cell x gene raw counts)
query_datasets:
      - /project/kleinman/hussein.lakkis/from_hydra/Collab/HGG_Selin_Revision/test/BT2016062/expression.csv
      - /project/kleinman/hussein.lakkis/from_hydra/Collab/HGG_Selin_Revision/test/P-1694_S-1694_multiome/expression.csv
      - /project/kleinman/hussein.lakkis/from_hydra/Collab/HGG_Selin_Revision/test/P-1701_S-1701_multiome/expression.csv
# step to check if required genes are kept between query and reference
check_genes: False
# path for the genes required
genes_required: Null
# rejection option for SVM
rejection: True
# classifiers to run
tools_to_run:
      - ACTINN
      - scHPL
      - scClassify
      - correlation
      - scmapcluster
      - scPred
      - SingleCellNet
      - SVM_reject
      - SingleR
      - CHETAH
      - scmapcell
      - SciBet
# benchmark tools on reference
benchmark: False
plots: True
consensus:
      - all

Submission File:

An example of the submission file is also available in this repository and is called submit.sh. This is for TORQUE schedulers.

#!/usr/bin/bash
#PBS -N scCoAnnotate
#PBS -o logs/err.txt
#PBS -e logs/out.txt
#PBS -l walltime=20:00:00
#PBS -l nodes=1:ppn=3
#PBS -l mem=125G
#PBS -l vmem=125G

# you need to do this step 

cd {root directory of the pipeline}
mkdir -p logs

# set up the environment
#conda init bash
module load miniconda/3.8
source ~/.conda_init.sh
module load snakemake/5.32.0
module load hydra/R/4.0.5
module load python/3.6.5

# Run the snakemake
snakemake --use-conda --configfile config.yml --cores 3

Tools Available

  1. ACTINN
  2. SciBet
  3. Spearman Correlation
  4. SVM
  5. SVM Rejection
  6. SingleR
  7. SingleCellNet
  8. CHETAH
  9. scHPL
  10. scPred
  11. scmap (cell and cluster)

Packages Required:

Python Specific Libraries:

tensorboard==1.7.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.0
tensorflow==1.7.0
tensorflow-estimator==2.5.0
sklearn==0.0
scikit-learn==0.24.1
pandas==1.1.5
numpy==1.19.5
numpy-groupies==0.9.13
numpydoc==1.1.0
scHPL==0.0.2

R Libraries:

scPred_1.9.2
SingleCellExperiment_1.12.0
SummarizedExperiment_1.20.0
CHETAH_1.6.0
scmap_1.12.0 
singleCellNet == 0.1.0
scibet == 1.0
SingleR == 1.4.1
Seurat == 4.0.3
dplyr == 1.0.7
tidyr == 1.1.3
viridis == 0.6.1
ggsci == 2.9
tidyverse == 1.3.1

Adding New Tools:

to add new tools, you have to add this template to the the snakefile as such:

rule {rulename}:
  input:
    reference = "{output_dir}/expression.csv".format(output_dir =config['output_dir']),
    labfile = config['reference_annotations'],
    query = expand("{output_dir}/{sample}/expression.csv",sample = samples,output_dir=config['output_dir']),
    output_dir =  expand("{output_dir}/{sample}",sample = samples,output_dir=config['output_dir'])

  output:
    pred = expand("{output_dir}/{sample}/{rulename}/{rulename}_pred.csv", sample  = samples,output_dir=config["output_dir"]),
    query_time = expand("{output_dir}/{sample}/{rulename}/{rulename}_query_time.csv",sample  = samples,output_dir=config["output_dir"]),
    training_time = expand("{output_dir}/{sample}/{rulename}/{rulename}_training_time.csv",sample  = samples,output_dir=config["output_dir"])
  log: expand("{output_dir}/{sample}/{rulename}/{rulename}.log", sample = samples,output_dir=config["output_dir"])
  shell:
    "Rscript Scripts/run_{rulename}.R "
    "--ref {input.reference} "
    "--labs {input.labfile} "
    "--query {input.query} "
    "--output_dir {input.output_dir} "
    "&> {log}"   

The tool script you add must generate outputs that match the output of the rule..

About

License:Apache License 2.0


Languages

Language:R 56.9%Language:Python 42.9%Language:Shell 0.2%