PyTorch implementation of DualGAN
- Loss values are plotted using Tensorboard in PyTorch.
- Image size: 256x256
- RMSProp optimizer is used. Learning rate = 0.00005, batch size = 1, # of epochs = 45:
- 6 resnet blocks used for Generator.
GAN losses ( : Discriminator A / : Discriminator B : Generator A / : Generator B : L1 loss A / : L1 loss B ) |
Generated images (Input / Generated / Reconstructed) |
---|---|