cd LORE-TSR/src
curl https://repo.anaconda.com/archive/Anaconda3-2021.11-Linux-x86_64.sh --output anaconda.sh
bash anaconda.sh
export PATH="/usr/local/cuda-11.8/bin:$PATH"
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
source ~/.bashrc
conda create --name Lore python=3.7
conda activate Lore
pip install -r requirements.txt
pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
chmod +x *.sh
cd lib/models/networsk/DCNv2
python3 setup.py build develop
Note: if It causes error : Unknown CUDA arch (8.9,9.0,...) or GPU not supported --> export TORCH_CUDA_ARCH_LIST=7.5 or export TORCH_CUDA_ARCH_LIST=6.0 .The rerun setup.py
Download and unzip checkpoint Here Change folder path in --demo, --load_model and --load_processor in folder checkpoint
python demo.py ctdet \
--dataset table \
--demo ../input_images/custom_2 \
--demo_name demo_wired \
--debug 1 \
--arch dla_34 \
--K 3000 \
--MK 5000 \
--tsfm_layers 4 \
--stacking_layers 4 \
--gpus 0\
--wiz_4ps \
--wiz_detect \
--wiz_rev \
--wiz_stacking \
--convert_onnx 1 \
--vis_thresh_corner 0.3 \
--vis_thresh 0.20 \
--scores_thresh 0.2 \
--nms \
--demo_dir ../visualization_wired/ \
--load_model ckpt_wtw/model_best.pth \
--load_processor ckpt_wtw/processor_best.pth