Implementation of paper:
- AU-Expression Knowledge Constrained Representation Learning for Facial Expression Recognition
IEEE International Conference on Robotics and Automation (ICRA), 2021.
Tao Pu, Tianshui Chen, Yuan Xie, Hefeng Wu, and Liang Lin.
Ubuntu 16.04 LTS, Python 3.5, PyTorch 1.3
# Step 1: Train the branch of facial expression recognition
python main.py --Model ResNet-101 --Experiment EM
# Step 2: Train the branch of facial AU recognition
python main.py --Model ResNet-101 --Experiment AU --Resume_Model <yourCheckpointPath>
# Step 3: Train whole model
python main.py --Model ResNet-101 --Experiment Fuse --Resume_Model <yourCheckpointPath>
Note: At step 2 and 3, you should load the checkpoint from the previous step.
Methods | Angry | Disgust | Fear | Happy | Neutral | Sad | Surprised | Ave. acc |
---|---|---|---|---|---|---|---|---|
DCNN-DA | 78.4 | 64.4 | 62.2 | 91.1 | 80.6 | 81.2 | 84.5 | 77.5 |
WSLGRN | 75.3 | 56.9 | 63.5 | 93.8 | 85.4 | 83.5 | 85.4 | 77.7 |
CP | 80.0 | 61.0 | 61.0 | 93.0 | 89.0 | 86.0 | 86.0 | 79.4 |
CompactDLM | 74.5 | 67.6 | 46.9 | 82.3 | 59.1 | 58.0 | 84.6 | 67.6 |
FSN | 72.8 | 46.9 | 56.8 | 90.5 | 76.9 | 81.6 | 81.8 | 72.5 |
DLP-CNN | 71.6 | 52.2 | 62.2 | 92.8 | 80.3 | 80.1 | 81.2 | 74.2 |
MRE-CNN | 84.0 | 57.5 | 60.8 | 88.8 | 80.2 | 79.9 | 86.0 | 76.7 |
Ours | 80.5 | 67.6 | 68.9 | 94.1 | 85.8 | 83.6 | 86.4 | 81.0 |
Methods | Angry | Disgust | Fear | Happy | Neutral | Sad | Surprised | Ave. acc |
---|---|---|---|---|---|---|---|---|
CP | 66.0 | 0.0 | 14.0 | 90.0 | 86.0 | 66.0 | 29.0 | 50.1 |
DLP-CNN | - | - | - | - | - | - | - | 51.1 |
IA-CNN | 70.7 | 0.0 | 8.9 | 70.4 | 60.3 | 58.8 | 28.9 | 42.6 |
IL | 61.0 | 0.0 | 6.4 | 89.0 | 66.2 | 48.0 | 33.3 | 43.4 |
Ours | 75.3 | 17.4 | 25.5 | 86.3 | 72.1 | 50.7 | 42.1 | 52.8 |
@inproceedings{Pu2021AUE-CRL,
author={Pu, Tao and Chen, Tianshui and Xie, Yuan and Wu, Hefeng and Lin, Liang},
title={Au-expression knowledge constrained representation learning for facial expression recognition},
booktitle={2021 IEEE international conference on robotics and automation (ICRA)},
year={2021},
pages={11154--11161},
publisher={IEEE},
doi={10.1109/ICRA48506.2021.9561252}
}
For any questions, feel free to open an issue or contact us: