GuoleiSun / pytracking

Visual tracking library based on PyTorch.

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

PyTracking

A general python framework for visual object tracking and video object segmentation, based on PyTorch.

New version released!

Note: Many of our changes are breaking. Integrate your extensions into the new version of PyTracking should not be difficult. We advise to check the updated implementation and train scripts of DiMP in order to update your code.

Highlights

PrDiMP, DiMP and ATOM Trackers

Official implementation of the PrDiMP (CVPR 2020), DiMP (ICCV 2019), and ATOM (CVPR 2019) trackers, including complete training code and trained models.

Libraries for implementing and evaluating visual trackers. It includes

  • All common tracking and video object segmentation datasets.
  • Scripts to analyse tracker performance and obtain standard performance scores.
  • General building blocks, including deep networks, optimization, feature extraction and utilities for correlation filter tracking.

LTR (Learning Tracking Representations) is a general framework for training your visual tracking networks. It is equipped with

  • All common training datasets for visual object tracking and segmentation.
  • Functions for data sampling, processing etc.
  • Network modules for visual tracking.
  • And much more...

Trackers

The toolkit contains the implementation of the following trackers.

PrDiMP

[Paper] [Raw results] [Models] [Training Code] [Tracker Code]

Official implementation of the PrDiMP tracker. This work proposes a general formulation for probabilistic regression, which is then applied to visual tracking in the DiMP framework. The network predicts the conditional probability density of the target state given an input image. The probability density is flexibly parametrized by the neural network itself. The regression network is trained by directly minimizing the Kullback-Leibler divergence.

DiMP

[Paper] [Raw results] [Models] [Training Code] [Tracker Code]

Official implementation of the DiMP tracker. DiMP is an end-to-end tracking architecture, capable of fully exploiting both target and background appearance information for target model prediction. It is based on a target model prediction network, which is derived from a discriminative learning loss by applying an iterative optimization procedure. The model prediction network employs a steepest descent based methodology that computes an optimal step length in each iteration to provide fast convergence. The model predictor also includes an initializer network that efficiently provides an initial estimate of the model weights.

DiMP overview figure

ATOM

[Paper] [Raw results] [Models] [Training Code] [Tracker Code]

Official implementation of the ATOM tracker. ATOM is based on (i) a target estimation module that is trained offline, and (ii) target classification module that is trained online. The target estimation module is trained to predict the intersection-over-union (IoU) overlap between the target and a bounding box estimate. The target classification module is learned online using dedicated optimization techniques to discriminate between the target object and background.

ATOM overview figure

ECO

[Paper] [Models] [Tracker Code]

An unofficial implementation of the ECO tracker. It is implemented based on an extensive and general library for complex operations and Fourier tools. The implementation differs from the version used in the original paper in a few important aspects.

  1. This implementation uses features from vgg-m layer 1 and resnet18 residual block 3.
  2. As in our later UPDT tracker, seperate filters are trained for shallow and deep features, and extensive data augmentation is employed in the first frame.
  3. The GMM memory module is not implemented, instead the raw projected samples are stored.

Please refer to the official implementation of ECO if you are looking to reproduce the results in the ECO paper or download the raw results.

The tracker models trained using PyTracking, along with their results on standard tracking benchmarks are provided in the model zoo.

Installation

Clone the GIT repository.

git clone https://github.com/visionml/pytracking.git

Clone the submodules.

In the repository directory, run the commands:

git submodule update --init  

Install dependencies

Run the installation script to install all the dependencies. You need to provide the conda install path (e.g. ~/anaconda3) and the name for the created conda environment (here pytracking).

bash install.sh conda_install_path pytracking

This script will also download the default networks and set-up the environment.

Note: The install script has been tested on an Ubuntu 18.04 system. In case of issues, check the detailed installation instructions.

Windows: (NOT Recommended!) Check these installation instructions.

Let's test it!

Activate the conda environment and run the script pytracking/run_webcam.py to run ATOM using the webcam input.

conda activate pytracking
cd pytracking
python run_webcam.py dimp dimp50    

What's next?

pytracking - for implementing your tracker

ltr - for training your tracker

Main Contributors

About

Visual tracking library based on PyTorch.

License:GNU General Public License v3.0


Languages

Language:Python 98.7%Language:Jupyter Notebook 0.7%Language:Shell 0.4%Language:MATLAB 0.1%