FMsunyh / DeepLab-V1-PyTorch

Code for ICLR 2015 deeplab-v1 paper "Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs"

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

DeepLab-V1-PyTorch

Code for ICLR 2015 deeplab-v1 paper "Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs", backbone is deeplab-largeFOV.

Config

  • python 3.7 / pytorch 1.2.0
  • pydensecrf
  • opencv

Datasets

/VOCdevkit
└── VOC2012
    ├── Annotations
    ├── ImageSets
    ├── JPEGImages
    ├── SegmentationObject
    └── SegmentationClass
    └── SegmentationClassAug

Performance

Compore with paper

Train set Eval set CRF? Code Pixel
Accuracy
Mean
Accuracy
Mean IoU FreqW IoU
trainaug
val DeepLab-LargeFOV - - 62.25 -
Ours-step 90.20 80.92 62.34 83.58
DeepLab-CRF-LargeFOV - - 67.64 -
Ours-step 92.23 79.99 67.58 86.32
e.g. We use ImageNet-1000 to train a classification task for backbone DeepLab-LargeFOV(VGG16)。

Learning rate policy

Train set Eval set CRF? Code Pixel
Accuracy
Mean
Accuracy
Mean IoU FreqW IoU
trainaug val Ours-step 90.20 80.92 62.34 83.58
Ours-poly 91.24 80.29 64.838 85.00
Ours-poly2 91.35 81.61 65.44 85.26
Ours-step 92.23 79.99 67.58 86.32
Ours-poly 92.65 79.92 68.72 86.98
Ours-poly2 92.89 80.39 69.60 87.35
e.g. The learning rate policy of "step" and "poly", mentioned by [deeplab v2](http://arxiv.org/pdf/1606.00915.pdf). Ours-poly2 means to add scale method to dataset augment.

Usage

Train

python main.py --type=train

Test

without CRF

python main.py --type=test

with CRF

python main.py --type=test --use_crf

Evaluate

python evalate.py

References

  1. Liang-Chieh Chen*, George Papandreou*, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. (*equal contribution). Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. ICLR, 2015.
    Project / Code / arXiv paper

  2. deeplab-v2-pytorch

About

Code for ICLR 2015 deeplab-v1 paper "Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs"


Languages

Language:Python 98.9%Language:Shell 1.1%