VAEL
Codebase for VAEL: Bridging Variational Autoencoders and Probabilistic Logic Programming.
If you use this codebase, please cite:
@misc{https://doi.org/10.48550/arxiv.2202.04178,
doi = {10.48550/ARXIV.2202.04178},
url = {https://arxiv.org/abs/2202.04178},
author = {Misino, Eleonora and Marra, Giuseppe and Sansone, Emanuele},
keywords = {Programming Languages (cs.PL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {VAEL: Bridging Variational Autoencoders and Probabilistic Logic Programming},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
Prerequisites
- Python >=3.7
- Dependencies:
Note: if something goes wrong with PySDD, try
pip install -r requirements.txt
pip install -vvv --upgrade --force-reinstall --no-binary :all: --no-deps pysdd
Usage
-
Clone the repo
git clone https://github.com/EleMisi/VAEL.git
-
Install the dependencies
pip install -r requirements.txt
-
Set the experiment(s) configuration in file config.py
-
Run the experiment(s)
python run_VAEL.py
Use flag
--task mnist
to run 2digit MNIST experiment(s), and--task mario
to run Mario experiment(s).
Results
The results are stored in the folder ./<exp_folder>/<exp_class>/ specified in run_VAEL.py.
In particular:
- the resulting metrics for each tested configuration are reported in exp_class.csv
- each subfolder refers to a specific configuration and contains
- the model checkpoint
- the learning curves
- some samples of image reconstruction and generation