DrRoad / FLOMPY

Flood Mapping Python Toolbox

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

FLOMPY - FLOod Mapping PYthon toolbox

GitHub license Release Facebook contributions welcome

Introduction

The FLOod Mapping PYthon toolbox is a free and open-source python toolbox for mapping of floodwater. It exploits the dense Sentinel-1 GRD intensity time series and is based on four processing steps. In the first step, a selection of Sentinel-1 images related to pre-flood (baseline) state and flood state is performed. In the second step, the preprocessing of the selected images is performed in order to create a co-registered stack with all the pre-flood and flood images. In the third step, a statistical temporal analysis is performed and a t-score map that represents the changes due to flood event is calculated. Finally, in the fourth step, a multi-scale iterative thresholding algorithm based on t-score map is performed to extract the final flood map. We believe that the end-user community can benefit by exploiting the FLOMPY's floodwater maps.

This is research code provided to you "as is" with NO WARRANTIES OF CORRECTNESS. Use at your own risk.

1. Installation

The installation notes below are tested only on Linux. Recommended minimum setup: Python 3.6, SNAP 8.0

1.1 Create python environment

FLOMPY is written in Python3 and relies on several Python modules, check the file FLOMPY_0.2_env.yml for details. We recommend using conda to install the python environment and the prerequisite packages, because of the convenient management.

1.2 Install snap gpt including Sentinel-1 toolbox

1.3 Account setup for downloading Sentinel-1 acquisitions

Sentinel-1 data download functionality require user credentials. More information here

1.4 Account setup for downloading global atmospheric model data

ERA-5 data set is redistributed over the Copernicus Climate Data Store (CDS), create a new account on the CDS website if you don't own a user account yet. On the profile, you will find your user id (UID) and your personal API Key. Create a file .cdsapirc under your home directory and add the following information:

url: https://cds.climate.copernicus.eu/api/v2
key: UID:personal API Key

CDS API is needed to auto-download ERA5 ECMWF data: conda install -c conda-forge cdsapi More details on CDSAPI can be found here.

1.5 Download FLOMPY

git clone https://github.com/kleok/FLOMPY.git

on GNU/Linux, append to .bashrc file:

export FLOMPY_HOME=~/FLOMPY/flompy
export PYTHONPATH=${PYTHONPATH}:${FLOMPY_HOME}
export PATH=${PATH}:${FLOMPY_HOME}

2. Running Flompy

FLOMPYapp.py

FLOMPY generates a floodwater map based on Sentinel-1 GRD products and meteorological data. FLOMPYapp.py includes the functionalities for FLOMPY's routine processing for generating floodwater maps. User should provide the following information at configuration file flompy/FLOMPYapp_template.cfg We suggest you to can have a look at the plots for each Sentinel-1 image (located at projectfolder) to find out if you have a considerable decrease of backscatter in the flood image with respect to the baseline images. If you are able to identify a decrease of backscatter in the flood image (darker tones), then you can expect that FLOMPY will generate a useful floodwater map. In cases that you have similar or bigger backscatter values of flood image with respect to baseline images (due to complex backscatter mechanisms) FLOMPY`s results cannot be trusted.

					#######################################
					#             CONFIGURATION FILE      #
					#######################################

#######################################
# 				A. Project Definition #
#######################################
#A1. The name of your project withough special characters.
Projectname = Palamas

#A2. The location that everything is going to be saved. Make sure 
#        you have enough free space disk on the specific location.
projectfolder = /RSL03/FLOMPY_palamas

#A3. The location of Flompy code 
src_dir = /RSL03/Flompy_0.3/FLOMPY/flompy

#A4. SNAP ORBIT DIRECTORY
snap_dir = /home/kleanthis/.snap/auxdata/Orbits/Sentinel-1

#A5. SNAP GPT full path
GPTBIN_PATH=/home/kleanthis/bin/snap8/snap/bin/gpt

##########################################
#   B. Flood event temporal information  #
##########################################
#---------------------- Instructions------------------------
# Your have to provide the datetime of your flood event. Make sure that
# a flood event took place at your provided datetime. 
# Based on your knowledge you can change [before_flood_days] in order
# to create a biggest 
# Sentinel-1 image that is going to be used to extract flood information
# will be between Flood_datetime and Flood_datetime+after_flood_days
# the closest Sentinel-1 to the Flood_datetime is picked
#--------------------------------------------------------
# B1. The datetime of flood event (Format is YYYYMMDDTHHMMSS)
Flood_datetime = 20200921T030000

# B2. Days before flood event for baseline stack construction
before_flood_days = 60

# B3. Days after flood event
after_flood_days = 3

#########################################
#    C. Flood event spatial information #
#########################################
#---------------------- Instructions------------------------
# You can provide AOI VECTOR FILE or AOI BBOX. 
# Please ensure that your AOI BBOX has dimensions smaller than 100km x 100km
# If you provide AOI VECTOR, AOI BBOX parameters will be ommited
#-In case you provide AOI BBOX coordinates, set  AOI_File = None
#--------------------------------------------------------
# C1. AOI VECTOR FILE (if given AOI BBOX parameters can be ommited)
AOI_File = /home/kleanthis/bin/FLOMPY/tests/Palamas_AOI.geojson

# C2. AOI BBOX (WGS84)
LONMIN=22.02
LATMIN=39.38
LONMAX=22.245
LATMAX=39.518

###################################
#    D. Precipitation information #
###################################
#---------------------- Instructions------------------------
#  Based on your knowledge, provide information related to the 
# accumulated precipitation that is required in order a flooding to occur. 
# These particular values will be used to classify Sentinel-1 images
#  which images correspond to flood and non-flood conditions.
#--------------------------------------------------------
# D1. number of consequent days that precipitation will be accumulated.
#       before each Sentinel-1 acquisition datetime
days_back = 5

# D2. The threshold of acculated precipitation
accumulated_precipitation_threshold = 40

########################################
# 	  E.  Data access and processing    #
########################################
#E1. The number of Sentinel-1 relative orbit. The default 
#       value is Auto. Auto means that the relative orbit that has
#       the Sentinel-1 image closer to the Flood_datetime is selected. 
relOrbit=Auto

#E2. The code of Sentinel-2 tile. (Default value: Auto)
S2_TILE=Auto

#E3. The minimum mapping unit area in square meters
minimum_mapping_unit_area_m2=4000

#E4. Computing resources to employ
CPU=8
RAM=20G

#E5. Credentials for Sentinel-1/2 downloading
scihub_username = ******
scihub_password = ******

3. Documentation and citation

Algorithms implemented in the software are described in detail at our publication. If FLOMPY was useful for you, we encourage you to cite the following work.

Karamvasis K, Karathanassi V. FLOMPY: An Open-Source Toolbox for Floodwater Mapping Using Sentinel-1 Intensity Time Series. Water. 2021; 13(21):2943. https://doi.org/10.3390/w13212943

Gounari 0., Falagas A., Karamvasis K., Tsironis V., Karathanassi V., Karantzalos K.: Floodwater Mapping & Extraction of Flood-Affected Agricultural Fields. Living Planet Symposium Bonn 23-27 May 2022. https://drive.google.com/file/d/1HiGkep3wx45gAQT6Kq34CdECMpQc8GUV/view?usp=sharing

4. Contact us

Feel free to open an issue, comment or pull request. We would like to listen to your thoughts and your recommendations. Any help is very welcome! ❤️

FLOMPY Team: Kleanthis Karamvasis, Ioanna Zotou, Alekos Falagas, Olympia Gounari, Vasileios Tsironis, Fragkiskos Dimos, Panagiotis Sismanidis, Pavlos Alexantonakis

About

Flood Mapping Python Toolbox

License:Other


Languages

Language:Python 100.0%