Dcanzano / neo4j-apoc-procedures

Awesome procedures for Neo4j 3.0 - codenamed "apoc"                                                  If you like it, please ★ above ⇧            

Home Page:https://neo4j-contrib.github.io/neo4j-apoc-procedures

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Awesome Procedures for Neo4j 3.x

License

Apache License 2.0

"APOC" Name history

Apoc was the technician and driver on board of the Nebuchadnezzar in the Matrix movie. He was killed by Cypher.

APOC was also the first bundled A Package Of Components for Neo4j in 2009.

APOC also stands for "Awesome Procedures On Cypher"

Download latest release

Go to http://github.com/neo4j-contrib/neo4j-apoc-procedures/releases/latest to find the latest release and download the binary jar to place into your $NEO4J_HOME/plugins folder.

Build & install the current development branch from source

git clone http://github.com/neo4j-contrib/neo4j-apoc-procedures
cd neo4j-apoc-procedures
mvn clean install
cp target/apoc-1.0.0-SNAPSHOT.jar $NEO4J_HOME/plugins/
$NEO4J_HOME/bin/neo4j restart

If you want to run embedded or use neo4j-shell on a disk store, configure your plugins directory in conf/neo4j.conf with dbms.plugin.directory=path/to/plugins.

Calling Procedures within Cypher

Procedures can be called stand-alone with CALL procedure.name();

But you can also integrate them into your Cypher statements which makes them so much more powerful.

WITH 'https://raw.githubusercontent.com/neo4j-contrib/neo4j-apoc-procedures/master/src/test/resources/person.json' AS url

CALL apoc.load.json(url) YIELD value as person

MERGE (p:Person {name:person.name})
   ON CREATE SET p.age = person.age, p.children = size(person.children)

Included Procedures Overview

Built in Help

apoc help apoc

call apoc.help('search')

lists name, description-text and if the procedure performs writes (descriptions are WIP), search string is checked against beginning (package) or end (name) of procedure

helpful
CALL apoc.help("apoc") YIELD name, text
WITH * WHERE text IS null
RETURN name AS undocumented

Builtin Package and Procedure count

To find the procedure count with the package in Neo4j:

apoc.dbms.procedure.count
Cypher for getting count of procedure in a package
CALL dbms.procedures() YIELD name
RETURN head(split(name,".")) as package, count(*), collect(name) as procedures;

Manual Indexes

Index Queries

Procedures to add to and query manual indexes

Note
Please note that there are (case-sensitive) automatic schema indexes, for equality, non-equality, existence, range queries, starts with, ends-with and contains!

apoc.index.addAllNodes('index-name',{label1:['prop1',…​],…​})

add all nodes to this full text index with the given fields, additionally populates a 'search' index field with all of them in one place

apoc.index.addNode(node,['prop1',…​])

add node to an index for each label it has

apoc.index.addNodeByLabel(node,'Label',['prop1',…​])

add node to an index for the given label

apoc.index.addRelationship(rel,['prop1',…​])

add relationship to an index for its type

apoc.index.nodes with score

apoc.index.search('index-name', 'query') YIELD node, weight

search for the first 100 nodes in the given full text index matching the given lucene query returned by relevance

apoc.index.nodes('Label','prop:value*') YIELD node, weight

lucene query on node index with the given label name

apoc.index.relationships('TYPE','prop:value*') YIELD rel, weight

lucene query on relationship index with the given type name

apoc.index.between(node1,'TYPE',node2,'prop:value*') YIELD rel, weight

lucene query on relationship index with the given type name bound by either or both sides (each node parameter can be null)

apoc.index.out(node,'TYPE','prop:value*') YIELD node, weight

lucene query on relationship index with the given type name for outgoing relationship of the given node, returns end-nodes

apoc.index.in(node,'TYPE','prop:value*') YIELD node, weight

lucene query on relationship index with the given type name for incoming relationship of the given node, returns start-nodes

Index Management

CALL apoc.index.list() - YIELD type,name,config

lists all manual indexes

CALL apoc.index.remove('name') YIELD type,name,config

removes manual indexes

CALL apoc.index.forNodes('name',{config}) YIELD type,name,config

gets or creates manual node index

CALL apoc.index.forRelationships('name',{config}) YIELD type,name,config

gets or creates manual relationship index

Add node to index example
match (p:Person) call apoc.index.addNode(p,["name","age"]) RETURN count(*);
// 129s for 1M People
call apoc.index.nodes('Person','name:name100*') YIELD node, weight return * limit 2

Schema Index Queries

Schema Index lookups that keep order and can apply limits

apoc.index.orderedRange(label,key,min,max,sort-relevance,limit) yield node

schema range scan which keeps index order and adds limit, values can be null, boundaries are inclusive

apoc.index.orderedByText(label,key,operator,value,sort-relevance,limit) yield node

schema string search which keeps index order and adds limit, operator is 'STARTS WITH' or 'CONTAINS'

Meta Graph

apoc.meta.graph

Returns a virtual graph that represents the labels and relationship-types available in your database and how they are connected.

CALL apoc.meta.graph

examines the full graph to create the meta-graph

CALL apoc.meta.graphSample(sampleSize)

examines a sample graph to create the meta-graph, default sampleSize is 100

CALL apoc.meta.subGraph({config})

examines a sample sub graph to create the meta-graph, default sampleSize is 100
config is: {labels:[labels],rels:[rel-types],sample:sample}

CALL apoc.meta.data

examines a subset of the graph to provide a tabular meta information

CALL apoc.meta.stats yield labelCount, relTypeCount, propertyKeyCount, nodeCount, relCount, labels, relTypes, stats

returns the information stored in the transactional database statistics

CALL apoc.meta.type(value)

type name of a value (INTEGER,FLOAT,STRING,BOOLEAN,RELATIONSHIP,NODE,PATH,NULL,UNKNOWN,MAP,LIST)

CALL apoc.meta.isType(value,type)

returns a row if type name matches none if not

isType example
MATCH (n:Person)
CALL apoc.meta.isType(n.age,"INTEGER")
RETURN n LIMIT 5

Schema

apoc.schema.assert({indexLabel:[indexKeys],…​},{constraintLabel:[constraintKeys,…​]}) yield label, key, unique, action

asserts that at the end of the operation the given indexes and unique constraints are there, each label:key pair is considered one constraint/label

Locking

call apoc.lock.nodes([nodes])

acquires a write lock on the given nodes

call apoc.lock.rels([relationships])

acquires a write lock on the given relationship

call apoc.lock.all([nodes],[relationships])

acquires a write lock on the given nodes and relationships

from/toJson

CALL apoc.convert.toJson([1,2,3])

converts value to json string

CALL apoc.convert.toJson( {a:42,b:"foo",c:[1,2,3]})

converts value to json map

CALL apoc.convert.fromJsonList('[1,2,3]')

converts json list to Cypher list

CALL apoc.convert.fromJsonMap( '{"a":42,"b":"foo","c":[1,2,3]}')

converts json map to Cypher map

CALL apoc.convert.toTree([paths]) yield value

creates a stream of nested documents representing the at least one root of these paths

Export / Import

Data is exported as cypher statements (for neo4j-shell, and partly apoc.cypher.runFile to the given file.

apoc.export.cypherAll(file,config)

exports whole database incl. indexes as cypher statements to the provided file

apoc.export.cypherData(nodes,rels,file,config)

exports given nodes and relationships incl. indexes as cypher statements to the provided file

apoc.export.cypherQuery(query,file,config)

exports nodes and relationships from the cypher statement incl. indexes as cypher statements to the provided file

Loading Data from RDBMS

apoc jdbc northwind load

CALL apoc.load.jdbc('jdbc:derby:derbyDB','PERSON') YIELD row CREATE (:Person {name:row.name})

load from relational database, either a full table or a sql statement

CALL apoc.load.jdbc('jdbc:derby:derbyDB','SELECT * FROM PERSON WHERE AGE > 18')

load from relational database, either a full table or a sql statement

CALL apoc.load.driver('org.apache.derby.jdbc.EmbeddedDriver')

register JDBC driver of source database

Loading Data from Web-APIs (JSON, XML, CSV)

CALL apoc.load.json('http://example.com/map.json') YIELD value as person CREATE (p:Person) SET p = person

load from JSON URL (e.g. web-api) to import JSON as stream of values if the JSON was an array or a single value if it was a map

CALL apoc.load.xml('http://example.com/test.xml') YIELD value as doc CREATE (p:Person) SET p.name = doc.name

load from XML URL (e.g. web-api) to import XML as single nested map with attributes and _type, _text and _children fields.

CALL apoc.load.xmlSimple('http://example.com/test.xml') YIELD value as doc CREATE (p:Person) SET p.name = doc.name

load from XML URL (e.g. web-api) to import XML as single nested map with attributes and type, _text fields and <childtype> collections per child-element-type.

CALL apoc.load.csv('url',{sep:";"}) YIELD lineNo, list, map

load CSV fom URL as stream of values
config contains any of: {skip:1,limit:5,header:false,sep:'TAB',ignore:['tmp'],arraySep:';',mapping:{years:{type:'int',arraySep:'-',array:false,name:'age',ignore:false}}

apoc.es.stats(host-url-Key)

elastic search statistics

apoc.es.get(host-or-port,index-or-null,type-or-null,id-or-null,query-or-null,payload-or-null) yield value

perform a GET operation

apoc.es.query(host-or-port,index-or-null,type-or-null,query-or-null,payload-or-null) yield value

perform a SEARCH operation

apoc.es.getRaw(host-or-port,path,payload-or-null) yield value

perform a raw GET operation

apoc.es.postRaw(host-or-port,path,payload-or-null) yield value

perform a raw POST operation

apoc.es.post(host-or-port,index-or-null,type-or-null,query-or-null,payload-or-null) yield value

perform a POST operation

apoc.es.put(host-or-port,index-or-null,type-or-null,query-or-null,payload-or-null) yield value

perform a PUT operation

Interacting with MongoDB

CALL apoc.mongodb.get(host-or-port,db-or-null,collection-or-null,query-or-null) yield value

perform a find operation on mongodb collection

CALL apoc.mongodb.count(host-or-port,db-or-null,collection-or-null,query-or-null) yield value

perform a find operation on mongodb collection

CALL apoc.mongodb.first(host-or-port,db-or-null,collection-or-null,query-or-null) yield value

perform a first operation on mongodb collection

CALL apoc.mongodb.find(host-or-port,db-or-null,collection-or-null,query-or-null,projection-or-null,sort-or-null) yield value

perform a find,project,sort operation on mongodb collection

CALL apoc.mongodb.insert(host-or-port,db-or-null,collection-or-null,list-of-maps)

inserts the given documents into the mongodb collection

CALL apoc.mongodb.delete(host-or-port,db-or-null,collection-or-null,list-of-maps)

inserts the given documents into the mongodb collection

CALL apoc.mongodb.update(host-or-port,db-or-null,collection-or-null,list-of-maps)

inserts the given documents into the mongodb collection

Copy these jars into the plugins directory:

mvn dependency:copy-dependencies
cp target/dependency/mongodb*.jar target/dependency/bson*.jar $NEO4J_HOME/plugins/
CALL apoc.mongodb.first('mongodb://localhost:27017','test','test',{name:'testDocument'})

Streaming Data to Gephi

apoc.gephi.add(url-or-key, workspace, data)

streams provided data to Gephi

Notes

Gephi has a streaming plugin, that can provide and accept JSON-graph-data in a streaming fashion.

Make sure to install the plugin firsrt and activate it for your workspace (there is a new "Streaming"-tab besides "Layout"), right-click "Master"→"start" to start the server.

You can provide your workspace name (you might want to rename it before you start thes streaming), otherwise it defaults to workspace0

You can also configure it in conf/neo4j.conf via apoc.gephi.url=url or apoc.gephi.<key>.url=url

Example

match path = (:Person)-[:ACTED_IN]->(:Movie)
WITH path LIMIT 1000
with collect(path) as paths
call apoc.gephi.add(null,'workspace0', paths) yield nodes, relationships, time
return nodes, relationships, time

Creating Data

CALL apoc.create.node(['Label'], {key:value,…​})

create node with dynamic labels

CALL apoc.create.nodes(['Label'], [{key:value,…​}])

create multiple nodes with dynamic labels

CALL apoc.create.addLabels( [node,id,ids,nodes], ['Label',…​])

adds the given labels to the node or nodes

CALL apoc.create.removeLabels( [node,id,ids,nodes], ['Label',…​])

removes the given labels from the node or nodes

CALL apoc.create.relationship(person1,'KNOWS',{key:value,…​}, person2)

create relationship with dynamic rel-type

CALL apoc.create.uuid YIELD uuid

creates an UUID

CALL apoc.create.uuids(count) YIELD uuid

creates count UUIDs

Virtual Nodes/Rels

Virtual Nodes and Relationships don’t exist in the graph, they are only returned to the UI/user for representing a graph projection. They can be visualized or processed otherwise. Please note that they have negative id’s.

CALL apoc.create.vNode(['Label'], {key:value,…​})

returns a virtual node

CALL apoc.create.vNodes(['Label'], [{key:value,…​}])

returns virtual nodes

CALL apoc.create.vRelationship(nodeFrom,'KNOWS',{key:value,…​}, nodeTo)

returns a virtual relationship

CALL apoc.create.vPattern({_labels:['LabelA'],key:value},'KNOWS',{key:value,…​}, {_labels:['LabelB'],key:value})

returns a virtual pattern

CALL apoc.create.vPatternFull(['LabelA'],{key:value},'KNOWS',{key:value,…​},['LabelB'],{key:value})

returns a virtual pattern

Example

MATCH (a)-[r]->(b)
WITH head(labels(a)) AS l, head(labels(b)) AS l2, type(r) AS rel_type, count(*) as count
CALL apoc.create.vNode(['Meta_Node'],{name:l}) yield node as a
CALL apoc.create.vNode(['Meta_Node'],{name:l2}) yield node as b
CALL apoc.create.vRelationship(a,'META_RELATIONSHIP',{name:rel_type, count:count},b) yield rel
RETURN *;

Virtual Graph

Create a graph object (map) from information that’s passed in. It’s basic structure is: {name:"Name",properties:{properties},nodes:[nodes],relationships:[relationships]}

apoc.graph.from(data,'name',{properties}) yield graph

creates a virtual graph object for later processing it tries its best to extract the graph information from the data you pass in

apoc.graph.fromData([nodes],[relationships],'name',{properties})

creates a virtual graph object for later processing

apoc.graph.fromPaths(path,'name',{properties})

creates a virtual graph object for later processing

apoc.graph.fromPaths([paths],'name',{properties})

creates a virtual graph object for later processing

apoc.graph.fromDB('name',{properties})

creates a virtual graph object for later processing

apoc.graph.fromCypher('statement',{params},'name',{properties})

creates a virtual graph object for later processing

Warmup

(thanks @SaschaPeukert)

CALL apoc.warmup.run()

Warmup the node and relationship page-caches by loading one page at a time

Monitoring

(thanks @ikwattro)

apoc.monitor.ids

node and relationships-ids in total and in use

apoc.monitor.kernel

store information such as kernel version, start time, read-only, database-name, store-log-version etc.

apoc.monitor.store

store size information for the different types of stores

apoc.monitor.tx

number of transactions total,opened,committed,concurrent,rolled-back,last-tx-id

apoc.monitor.locks(minWaitTime long)

db locking information such as avertedDeadLocks, lockCount, contendedLockCount and contendedLocks etc. (enterprise)

Cypher Execution

CALL apoc.cypher.run(fragment, params) yield value

executes reading fragment with the given parameters

CALL apoc.cypher.runFile(file or url) yield row, result

runs each statement in the file, all semicolon separated - currently no schema operations

CALL apoc.cypher.runMany('cypher;\nstatements;',{params})

runs each semicolon separated statement and returns summary - currently no schema operations

CALL apoc.cypher.mapParallel(fragment, params, list-to-parallelize) yield value

executes fragment in parallel batches with the list segments being assigned to _

CALL apoc.cypher.doIt(fragment, params) yield value

executes writing fragment with the given parameters

TODO runFile: begin/commit/schema await/constraints/indexes

Job Management

CALL apoc.periodic.commit(statement, params)

repeats an batch update statement until it returns 0, this procedure is blocking

CALL apoc.periodic.list()

list all jobs

CALL apoc.periodic.submit('name',statement)

submit a one-off background statement

CALL apoc.periodic.schedule('name',statement,repeat-time-in-seconds)

submit a repeatedly-called background statement

CALL apoc.periodic.countdown('name',statement,delay-in-seconds)

submit a repeatedly-called background statement until it returns 0

CALL apoc.periodic.rock_n_roll(statementIteration, statementAction, batchSize) YIELD batches, total

iterate over first statement and apply action statement with given transaction batch size. Returns to numeric values holding the number of batches and the number of total processed rows. E.g.

CALL apoc.periodic.iterate('statement returning items', 'statement per item', {batchSize:1000,parallel:true}) YIELD batches, total

run the second statement for each item returned by the first statement. Returns number of batches and total processed rows

  • there are also static methods Jobs.submit, and Jobs.schedule to be used from other procedures

  • jobs list is checked / cleared every 10s for finished jobs

CALL apoc.periodic.rock_n_roll('match (p:Person) return id(p) as id_p', 'MATCH (p) where id(p)={id_p} SET p.lastname =p.name', 20000)

copies over the name property of each person to lastname.

Graph Refactoring

call apoc.refactor.cloneNodes([node1,node2,…​])

clone nodes with their labels and properties

call apoc.refactor.cloneNodesWithRelationships([node1,node2,…​])

clone nodes with their labels, properties and relationships

call apoc.refactor.mergeNodes([node1,node2])

merge nodes onto first in list

call apoc.refactor.to(rel, endNode)

redirect relationship to use new end-node

call apoc.refactor.from(rel, startNode)

redirect relationship to use new start-node

call apoc.refactor.setType(rel, 'NEW-TYPE')

change relationship-type

call apoc.refactor.extractNode([rel1,rel2,…​], [labels], 'OUT','IN')

extract node from relationships

call apoc.refactor.collapseNode([node1,node2],'TYPE')

collapse node to relationship, node with one rel becomes self-relationship

call apoc.refactor.normalizeAsBoolean(entity, propertyKey, true_values, false_values)

normalize/convert a property to be boolean

call apoc.refactor.categorize(node, propertyKey, type, outgoing, label)

turn each unique propertyKey into a category node and connect to it

TODO:

  • merge nodes by label + property

  • merge relationships

Spatial

CALL apoc.spatial.geocode('address') YIELD location, latitude, longitude, description, osmData

look up geographic location of location from openstreetmap geocoding service

CALL apoc.spatial.sortPathsByDistance(Collection<Path>) YIELD path, distance

sort a given collection of paths by geographic distance based on lat/long properties on the path nodes

Helpers

Static Value Storage

apoc.static.get(name)

returns statically stored value from config (apoc.static.<key>) or server lifetime storage

apoc.static.getAll(prefix)

returns statically stored values from config (apoc.static.<prefix>) or server lifetime storage

apoc.static.set(name, value)

stores value under key for server livetime storage, returns previously stored or configured value

Conversion Functions

Sometimes type information gets lost, these functions help you to coerce an "Any" value to the concrete type

apoc.convert.toString(value)

tries it’s best to convert the value to a string

apoc.convert.toMap(value)

tries it’s best to convert the value to a map

apoc.convert.toList(value)

tries it’s best to convert the value to a list

apoc.convert.toBoolean(value)

tries it’s best to convert the value to a boolean

apoc.convert.toNode(value)

tries it’s best to convert the value to a node

apoc.convert.toRelationship(value)

tries it’s best to convert the value to a relationship

apoc.convert.toSet(value)

tries it’s best to convert the value to a set

Map Functions

apoc.map.fromPairs([[key,value],[key2,value2],…​])

creates map from list with key-value pairs

apoc.map.fromLists([keys],[values])

creates map from a keys and a values list

apoc.map.fromValues([key,value,key1,value1])

creates map from alternating keys and values in a list

apoc.map.setKey(map,key,value)

returns the map with the value for this key added or replaced

apoc.map.removeKey(map,key)

returns the map with the key removed

apoc.map.removeKeys(map,[keys])

returns the map with the keys removed

apoc.map.clean(map,[keys],[values]) yield value

removes the keys and values (e.g. null-placeholders) contained in those lists, good for data cleaning from CSV/JSON

Collection Functions

apoc.coll.sum([0.5,1,2.3])

sum of all values in a list

apoc.coll.avg([0.5,1,2.3])

avg of all values in a list

apoc.coll.min([0.5,1,2.3])

minimum of all values in a list

apoc.coll.max([0.5,1,2.3])

maximum of all values in a list

apoc.coll.sumLongs([1,3,3])

sums all numeric values in a list

apoc.coll.partition(list,batchSize)

partitions a list into sublists of batchSize

apoc.coll.zip([list1],[list2])

all values in a list

apoc.coll.pairs([list])

returns `[first,second],[second,third], …​

apoc.coll.toSet([list])

returns a unique list backed by a set

apoc.coll.sort(coll)

sort on Collections

apoc.coll.sortNodes([nodes], 'name')

sort nodes by property

apoc.coll.contains(coll, value)

optimized contains operation (using a HashSet) (returns single row or not)

apoc.coll.containsAll(coll, values)

optimized contains-all operation (using a HashSet) (returns single row or not)

apoc.coll.containsSorted(coll, value)

optimized contains on a sorted list operation (Collections.binarySearch) (returns single row or not)

apoc.coll.containsAllSorted(coll, value)

optimized contains-all on a sorted list operation (Collections.binarySearch) (returns single row or not)

apoc.coll.union(first, second)

creates the distinct union of the 2 lists

apoc.coll.subtract(first, second)

returns unique set of first list with all elements of second list removed

apoc.coll.removeAll(first, second)

returns first list with all elements of second list removed

apoc.coll.intersection(first, second)

returns the unique intersection of the two lists

apoc.coll.disjunction(first, second)

returns the disjunct set of the two lists

apoc.coll.unionAll(first, second)

creates the full union with duplicates of the two lists

apoc.coll.split(list,value)

splits collection on given values rows of lists, value itself will not be part of resulting lists

apoc.coll.indexOf(coll, value)

position of value in the list

Lookup Functions

apoc.get.nodes(node

id

[ids]) yield node

quickly returns all nodes with these id’s

apoc.get.rels(rels

id

[ids]) yield rel

quickly returns all relationships with these id’s

Phonetic Comparisons

CALL apoc.text.phonetic(value) yield value

Compute the US_ENGLISH phonetic soundex encoding of all words of the text value which can be a single string or a list of strings

CALL apoc.text.phoneticDelta(text1, text2) yield phonetic1, phonetic2, delta

Compute the US_ENGLISH soundex character difference between two given strings

CALL apoc.text.join(['text1','text2',…​], delimiter) YIELD value

join the given strings with the given delimiter.

CALL apoc.text.clean(text) YIELD value

strip the given string of everything except alpha numeric characters and convert it to lower case.

CALL apoc.text.compareCleaned(text1, text2) YIELD value

compare the given strings stripped of everything except alpha numeric characters converted to lower case.

CALL apoc.text.filterCleanMatches(text1, text2) YIELD value

filter out non-matches of the given strings stripped of everything except alpha numeric characters converted to lower case.

apoc.data.domain(email_or_url) yield value

returns domain part of the value

apoc.util.sha1([values])

computes the sha1 of the concatenation of all string values of the list

apoc.util.md5([values])

computes the md5 of the concatenation of all string values of the list

apoc.util.sleep({duration})

sleeps for <duration> millis, transaction termination is honored

Date/time Support

(thanks @tkroman)

Conversion between formatted dates and timestamps

apoc.date.parseDefault('2015-03-25 03:15:59','s')

get Unix time equivalent of given date (in seconds)

apoc.date.parse('2015/03/25 03-15-59','s', 'yyyy/MM/dd HH/mm/ss')

same as previous, but accepts custom datetime format

apoc.date.formatDefault(12345,'s')

get string representation of date corresponding to given Unix time (in seconds)

apoc.date.format(12345,'s', 'yyyy/MM/dd HH/mm/ss')

the same as previous, but accepts custom datetime format

apoc.date.parseDefault('2015-03-25 03:15:59','ms')

get Unix time equivalent of given date (in milliseconds)

apoc.date.parse('2015/03/25 03-15-59','ms','yyyy/MM/dd HH/mm/ss')

same as previous, but accepts custom datetime format

apoc.date.formatDefault(12345,'ms')

get string representation of date corresponding to given time in milliseconds in UTC time zone

apoc.date.format(12345,'ms', 'yyyy/MM/dd HH/mm/ss')

the same as previous, but accepts custom datetime format

apoc.date.formatTimeZone(12345,'s', 'yyyy/MM/dd HH/mm/ss', 'ABC')

the same as previous, but accepts custom time zone

  • possible unit values: ms,s,m,h,d and their long forms millis,milliseconds,seconds,minutes,hours,days.

  • possible time zone values: Either an abbreviation such as PST, a full name such as America/Los_Angeles, or a custom ID such as GMT-8:00. Full names are recommended. You can view a list of full names in this Wikipedia page.

Reading separate datetime fields

Splits date (optionally, using given custom format) into fields returning a map from field name to its value.

  • apoc.date.fields('2015-03-25 03:15:59')

  • apoc.date.fieldsFormatted('2015-01-02 03:04:05 EET', 'yyyy-MM-dd HH:mm:ss zzz')

Bitwise operations

Provides a wrapper around the java bitwise operations.

call apoc.bitwise.op(a long, "operation", b long ) yield value as <identifier>

examples

operator

name

example

result

a & b

AND

call apoc.bitwise.op(60,"&",13)

12

a | b

OR

call apoc.bitwise.op(60,"|",13)

61

a ^ b

XOR

call apoc.bitwise.op(60,"&",13)

49

~a

NOT

call apoc.bitwise.op(60,"&",0)

-61

a << b

LEFT SHIFT

call apoc.bitwise.op(60,"<<",2)

240

a >> b

RIGHT SHIFT

call apoc.bitwise.op(60,">>",2)

15

a >>> b

UNSIGNED RIGHT SHIFT

call apoc.bitwise.op(60,">>>",2)

15

Path Expander

(thanks @keesvegter)

The apoc.path.expand procedure makes it possible to do variable length path traversals where you can specify the direction of the relationship per relationship type and a list of Label names which act as a "whitelist" or a "blacklist". The procedure will return a list of Paths in a variable name called "path".

call apoc.path.expand(startNode <id>|Node, relationshipFilter, labelFilter, minDepth, maxDepth ) yield path as <identifier>

expand from given nodes(s) taking the provided restrictions into account

Relationship Filter

Syntax: [<]RELATIONSHIP_TYPE1[>]|[<]RELATIONSHIP_TYPE2[>]|…​

input type direction

LIKES>

LIKES

OUTGOING

<FOLLOWS

FOLLOWS

INCOMING

KNOWS

KNOWS

BOTH

Label Filter

Syntax: [+-/]LABEL1|LABEL2|…​

input label result

+Friend

Friend

include label (whitelist)

-Foe

Foe

exclude label (blacklist)

/Friend

Friend

stop traversal after reaching a friend (but include him)

Utility to find nodes in parallel (if possible). These procedures return a single list of nodes or a list of 'reduced' records with node id, labels, and the properties where the search was executed upon.

call apoc.search.node(labelPropertyMap, searchType, search ) yield node

A distinct set of Nodes will be returned.

call apoc.search.nodeAll(labelPropertyMap, searchType, search ) yield node

All the found Nodes will be returned.

call apoc.search.nodeReduced(labelPropertyMap, searchType, search ) yield id, labels, values

A merged set of 'minimal' Node information will be returned. One record per node (-id).

call apoc.search.nodeAllReduced(labelPropertyMap, searchType, search ) yield id, labels, values

All the found 'minimal' Node information will be returned. One record per label and property.

labelPropertyMap

'{ label1 : "propertyOne", label2 :["propOne","propTwo"] }'

(JSON or Map) For every Label-Property combination a search will be executed in parallel (if possible): Label1.propertyOne, label2.propOne and label2.propTwo.

searchType

'exact' or 'contains' or 'starts with' or 'ends with'

Case insensitive string search operators

searchType

"<", ">", "=", "<>", "⇐", ">=", "=~"

Operators

search

'Keanu'

The actual search term (string, number, etc).

example
CALL apoc.search.nodeAll('{Person: "name",Movie: ["title","tagline"]}','contains','her') YIELD node AS n RETURN n
call apoc.search.nodeReduced({Person: 'born', Movie: ['released']},'>',2000) yield id, labels, properties RETURN *

Graph Algorithms (work in progress)

Provides some graph algorithms (not very optimized yet)

apoc.algo.dijkstra(startNode, endNode, 'KNOWS|<WORKS_WITH|IS_MANAGER_OF>', 'distance') YIELD path, weight

run dijkstra with relationship property name as cost function

apoc.algo.dijkstraWithDefaultWeight(startNode, endNode, 'KNOWS|<WORKS_WITH|IS_MANAGER_OF>', 'distance', 10) YIELD path, weight

run dijkstra with relationship property name as cost function and a default weight if the property does not exist

apoc.algo.aStar(startNode, endNode, 'KNOWS|<WORKS_WITH|IS_MANAGER_OF>', 'distance','lat','lon') YIELD path, weight

run A* with relationship property name as cost function

apoc.algo.aStar(startNode, endNode, 'KNOWS|<WORKS_WITH|IS_MANAGER_OF>', {weight:'dist',default:10, x:'lon',y:'lat'}) YIELD path, weight

run A* with relationship property name as cost function

apoc.algo.allSimplePaths(startNode, endNode, 'KNOWS|<WORKS_WITH|IS_MANAGER_OF>', 5) YIELD path, weight

run allSimplePaths with relationships given and maxNodes

apoc.algo.betweenness(['TYPE',…​],nodes,BOTH) YIELD node, score

calculate betweenness centrality for given nodes

apoc.algo.closeness(['TYPE',…​],nodes, INCOMING) YIELD node, score

calculate closeness centrality for given nodes

apoc.algo.cover(nodeIds) YIELD rel

return relationships between this set of nodes

apoc.algo.pageRank(nodes) YIELD node, score

calculates page rank for given nodes

apoc.algo.pageRankWithConfig(nodes,{iterations:_,types:_}) YIELD node, score

calculates page rank for given nodes

apoc.algo.community(times,labels,partitionKey,type,direction,weightKey,batchSize)

simple label propagation kernel

apoc.algo.cliques(minSize) YIELD clique

search the graph and return all maximal cliques at least at large as the minimum size argument.

apoc.algo.cliquesWithNode(startNode, minSize) YIELD clique

search the graph and return all maximal cliques that are at least as large than the minimum size argument and contain this node

Example: find the weighted shortest path based on relationship property d from A to B following just :ROAD relationships

MATCH (from:Loc{name:'A'}), (to:Loc{name:'D'})
CALL apoc.algo.dijkstra(from, to, 'ROAD', 'd') yield path as path, weight as weight
RETURN path, weight
MATCH (n:Person)

Plans

  • move apoc.get to apoc.nodes and apoc.rels

  • add apoc.nodes.delete(id|ids|node|nodes)

  • (√) add weight/score to manual index operations, expose it, TODO add Sort.RELEVANCE sorter conditionally or unconditionally

  • pass in last count to rundown so you can also do batch-creates

  • in browser guide as apoc-help-page

  • (√) optimized collection functions (WIP)

  • Time Conversion Functions (ISO<→ts, padded long representation)

  • ordered, limited retrieval from index (both manual and schema index)

  • json to graph (mapping)

  • virtual graph from collection of nodes and rels, handle node-uniqueness with pk

  • RDF / Ontology loader

  • Encryption / decryption of single properties or a subset or all properties (provide decryption key as param or config)

  • (in progress) Graph Algorithms (Stefan, Max?)

  • custom expanders, e.g. with dynamic rel-type suffixes and prefixes

  • (√) Graph Refactorings (WIP)

  • (√) Job Queue (WIP) See BatchedWriter from Jake/Max

  • run/load shell scripts apoc.load.shell(path)

  • apox.save.dump() whole database, dump("statement"), dump("", "data/import/file") dump("", "URL TO PUT"), formats - binary(packstream), human readable(graphml, graphjson), compression

  • store arbitrary objects in properties with kryo/packstream or similar serialization

  • variable path length on patterns instead of single relationships. Don’t have a syntax for this to suggest, but assume you want to search for ()-[:TYPE_A]→()-[:TYPE_B]→() e.g. 2..5 times.

  • match (a)-[r*]→(b) where all rels in the path are this pattern ()-[:Foo]→()-[:Bar]→()

  • all unique pairs of a list

  • TopK select

  • apoc.schema.create(indexConfig) - {unique:[{Label:keys}], index:[{Label:keys}],existence:[{Label:keys}], }

  • Procedures in other languages (e.g. JS, JSR-223 scripting → apoc-unsafe project)

  • eval javascript

  • apoc.meta.validate(metagraph) validate a metagraph against the current graph and report violations

  • apoc.run.register(name, query[,params]), apoc.run.named(name,[params])

  • apoc.create.graph(nodes,rels,data-map) → {nodes:[], rels:[], data:{}} a graph data structure, e.g. for rendering, export, validation, …​

  • auto-increment id’s (per label? → graph properties)

  • query neo4j databases

  • find relationships within a set of nodes

  • summary for graphs (a bit like apoc.meta.stats but for a named subgraph)

  • graph operations (union, intersection etc. see gradoop), but also graph summarization and FSM

  • path expander config for node and rel-properties, both equals with value as well as comparisons with operator → value { name: "John" weight : { > : 10, < : 100 }

  • represent storage-records virtually as a graph

  • run cypher query and return query plan as a graph

  • add list of values support to parallel node search, add support for HAS_LABEL (OR, AND, ALL)

  • run export in parallel

  • demonstrate how to run export in parallel just with the built in procs in periodic/cypher

  • give a flag to rock_n_roll that makes it run concurrently

  • allow to attach cypher queries to tx handler (like triggers)

About

Awesome procedures for Neo4j 3.0 - codenamed "apoc"                                                  If you like it, please ★ above ⇧            

https://neo4j-contrib.github.io/neo4j-apoc-procedures

License:Apache License 2.0


Languages

Language:Java 77.3%Language:HTML 22.7%