DS3Lab / DocParser

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

DocParser: Hierarchical Structure Parsing of Document Renderings

Codes for the system presented in "DocParser: Hierarchical Structure Parsing of Document Renderings"

paper

Installation and requirements

Tested for Ubuntu 18.04/20.04.

Use of a GPU significantly speeds up generation of detection outputs, but it is possible to run the inference demo code on CPU.

To setup via Anaconda, please follow these steps:

  1. Install anaconda. Up-to-date instructions can be found at: https://docs.anaconda.com/anaconda/install/

  2. Set up python 3.6 environment: conda create -n docparser python=3.6

  3. Activate the environment: source activate docparser

  4. Install all requirements: pip install -r requirements.txt

    • (for GPU-enabled installation: pip install -r requirements_gpu.txt)
  5. Install Mask R-CNN library:

  6. Install docparser:

    • Change into DocParser directory
    • type python setup.py develop
  7. Prepare the datasets:

  8. Prepare the trained models:

  9. For running the ICDAR demo:

    • Please note that, in order to run the ICDAR 2013 evaluation script provided by the competition organizers, a Java installation is necessary. We used openjdk 11.0.7 2020-04-14 in our experiments.
    • If necessary, update permissions for the evaluation script (on linux systems): chmod a+x DocParser/docparser/utils/dataset-tools-20180206.jar
  10. From the DocParser directory, execute: python demos/demo_inference.py plus one or more of the following command line arguments:

    • --page
    • --table
    • --icdar
    • e.g. python demos/demo_inference.py --page --table

Evaluations

arXivDocs

The results of our current system on arXivDocs-target is likely to perform better than the one evaluated in the last version of the paper, mostly due to further improvements to postprocessing.

ICDAR 2013, Table Structure Recognition

Updated Results. We corrected a read-out error on the outputs of the provided evaluation script for documents with multiple tables.

System F1* F1
DocParser Baselie 0.8443 0.8209
DocParser WS 0.8117 0.8056
DocParser WS+FT 0.9292 0.9292

(PDF-based system F1: 0.9221)

Credits

Parts of our code is based on: https://github.com/rafaelpadilla/Object-Detection-Metrics

https://github.com/matterport/Mask_RCNN

Reference

Rausch, J., Martinez, O., Bissig, F., Zhang, C., & Feuerriegel, S. - 35th AAAI Conference on Artificial Intelligence (AAAI-21)(virtual)

About

License:MIT License


Languages

Language:Python 100.0%