DJCordhose / deep-learning-crash-course-notebooks

Notebooks and Colab links for the code samples for the Manning video course "Deep Learning Crash Course"

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Companion notebooks for the code samples of the video course "Deep Learning Crash Course"

This repository contains notebooks implementing the code samples found in the video course Deep Learning Crash Course (Manning Publications). Note that the video course features far more content than you will find in these notebooks, in particular further explanations and figures. Here we have only included the code samples themselves and immediately related surrounding comments.

Our Crash Risk Calculator running on TensorFlow.js

In this course we train a model that can predict the crash risk of a driver based on three simple inputs. We train the model using Colab notebooks on Google's GPU based hardware and convert the final model to a format TensorFlow.js supports. This allows us to deploy the model togther with a simple application that runs serverless in the browser.

Try is out here (you will need an up to version of a modern browser to do this):

https://djcordhose.github.io/deep-learning-crash-course-notebooks/

Original Notebooks

These notebooks have been created using Python 3.6 and TensorFlow 1.x

TensorFlow 2

TensorFlow models from Unit 3 converted to TensorFlow 2

Data related notebooks

About

Notebooks and Colab links for the code samples for the Manning video course "Deep Learning Crash Course"

License:MIT License


Languages

Language:Jupyter Notebook 100.0%Language:Python 0.0%