BaohaoLiao / lq_lora_v0

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

LQ-LoRA: Low-rank plus Quantized Matrix Decomposition for Efficient Language Model Finetuning [Paper]

Changelog

  • 20231215: Uploaded artifacts.

Artifacts

  • Model checkpoint (and training logs) for LLaMA-2 7B with LQ-LoRA (2.75-bits, 64-rank, Fisher) [link]
  • Model checkpoint (and training logs) for LLaMA-2 70B with LQ-LoRA (2.75-bits, 64-rank, Fisher) [link]
  • Pre-computed ILP data for LLaMA-2 7B [link]
  • Pre-computed ILP data for LLaMA-2 70B [link]
  • Fisher Information for LLaMA-2 7B [link]
  • Fisher Information for LLaMA-2 70B -> file over the size limit, please contact us!

Installation

  1. Clone the repo
git clone https://github.com/HanGuo97/lq-lora.git
cd lq-lora
  1. Create Docker image (optional)
# Using BuiltKit
DOCKER_BUILDKIT=1 docker build \
    -t lqlora \
    -f Dockerfile \
    .

docker run -ti --rm \
    --gpus all \
    -p 28888:8888 \
    --shm-size=2g \
    lqlora \
    bash -c "cd main/ && jupyter-lab --ip=0.0.0.0 --allow-root"
  1. Install dependencies
bash scripts/setup.sh

Note: Some of the codebase relies on PyTorch>=2.1.

Usages

Downloading Data for Quantization

After downloading the files, please update FILE_NAMES_DICT in models/allocation_utils accordingly.

Applying Quantization

from transformers import AutoTokenizer, AutoModelForCausalLM
from models import lora_utils

data = "c4"         # applying data-aware quantization
budget = "2.75"     # target bits
model_size = "70b"  # 7b or 70b

# Loads the base model (to CPU)
model = AutoModelForCausalLM.from_pretrained(
    f"meta-llama/Llama-2-{model_size}-hf")

# Adds LoRA components, etc
model = lora_utils.prepare_model_for_lora(
    model=model,
    num_ranks=64,
    lora_alpha=16,
    lora_dropout=0.0,
    use_gradient_checkpointing=True)

# Applies LQ-LoRA to the model.
lora_utils.transform_lora_layers(
    lpq=True,
    model=model,
    model_name=f"llama-2-{model_size}/lpq-64/{data},budget={budget}",
    device="cuda")

Saving Quantized Models

Note that HuggingFace's PEFT library only saves the adapter parameters. Since LQ-LoRA additionally changes the base model parameters, we need to save the entire weights of the model.

state_dict = model.state_dict()
file_name = os.path.join(
    output_dir,
    "full_model.pth")
torch.save(state_dict, file_name)

Loading Quantized Models

# No need to apply `transform_lora_layers` because
# these will be loaded from the checkpoint.
model = lora_utils.prepare_model_for_lora(
    model=model,
    num_ranks=64,
    lora_alpha=16,
    lora_dropout=0.0,
    use_gradient_checkpointing=True,
    checkpoint_dir=checkpoint_dir)  # -> enter the path to the checkpoint directory

Todos

  • Upload the artifacts
  • We use a legacy version of the (de)quantizaton implementation. We will update the code to use the latest version of the (de)quantization implementation.

Acknowledgement

This code reuses components from several libraries including QLoRA and OmniQuant.

About

License:Apache License 2.0


Languages

Language:Python 93.5%Language:Shell 6.1%Language:Dockerfile 0.5%