AtharvaPawar456 / District-HeatIndex-Predication-using-LSTM

District-HeatIndex-Predication-using-LSTM

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

District-HeatIndex-Predication-using-LSTM

District-HeatIndex-Predication-using-LSTM

Open in Google Colab

Model Compare Table:

Model Feature No. Test Loss Test Accuracy Predicted HEAT_INDEX Actual HEAT_INDEX Mean Absolute Error
1 8 1.52 90.45 73.28 74.71 1.43%
2 4 1.50 90.16 74.79 74.71 0.08%
3 25 0.34 40.56 73.9 74.71 0.91%
  • model 2 shows best performance as its Mean Absolute Error is very less than Model 1 and Model 3...

Features for each Model:

  • Model 1 : ['T2M', 'T_Fahrenheit', 'TS', 'T2M_MIN', 'T2M_MAX', 'T2MWET', 'WS10M_RANGE', 'DISTRICT_INDEX']
  • Model 2 : ['T2M','RH2M', 'T2MDEW', 'WD10M']
  • Model 3 : ['T2M', 'T_Fahrenheit', 'TS', 'T2M_MIN', 'T2M_MAX', 'T2MWET', 'WS10M_RANGE', 'WD50M', 'WD10M', 'WS10M_MAX', 'RH2M', 'MO', 'WS10M', 'T2MDEW', 'QV2M', 'WS50M', 'LON', 'DISTRICT_INDEX', 'LAT', 'PS', 'PRECTOTCORR', 'YEAR', 'T2M_RANGE', 'DY', 'WS10M_MIN']

Project Overview:

Title:

HeatIndex Prediction using LSTM

Description:

LSTM models predict Heat Index with varying feature sets. Model 2 excels, showcasing superior performance with fewer features.

Problem Statement:

Predict Heat Index based on meteorological features for improved understanding of weather conditions and human comfort.

Abstract:

This project utilizes LSTM models to predict Heat Index, comparing performance with different feature sets. Model 2, with 4 selected features, outperforms others.

Application:

  • Weather Forecasting
  • Urban Planning
  • Health and Safety
  • Agriculture
  • Energy Consumption
  • Outdoor Event Planning

Advantages:

  • Accurate Heat Index Prediction
  • Reduced Model Complexity (Model 2)
  • Better Interpretability (Model 2)
  • Faster Training and Inference (Model 2)
  • Improved Resource Efficiency

Limitations:

  • Limited Feature Set
  • Potential Overfitting
  • Sensitivity to Input Data Quality
  • Lack of External Factors
  • Model Generalization Challenges

Future Scope:

  • Include Additional Relevant Features
  • Explore Advanced LSTM Architectures
  • Fine-Tune Hyperparameters
  • Integrate External Data Sources
  • Develop Real-time Prediction Capability

About Dataset:

Features:

  • T2M : Temperature at 2 meters (in degrees Celsius).
  • T_Fahrenheit : Temperature at 2 meters converted to Fahrenheit.
  • TS : Surface temperature (in degrees Celsius).
  • T2M_MIN : Minimum temperature at 2 meters (in degrees Celsius).
  • T2M_MAX : Maximum temperature at 2 meters (in degrees Celsius).
  • T2MWET : Wet-bulb temperature at 2 meters (in degrees Celsius).
  • WS10M_RANGE : Wind speed at 10 meters range (difference between maximum and minimum) (in meters per second).
  • WD50M : Wind direction at 50 meters (in degrees).
  • WD10M : Wind direction at 10 meters (in degrees).
  • WS10M_MAX : Maximum wind speed at 10 meters (in meters per second).
  • RH2M : Relative humidity at 2 meters (percentage).
  • MO : Month.
  • WS10M : Wind speed at 10 meters (in meters per second).
  • T2MDEW : Dew point temperature at 2 meters (in degrees Celsius).
  • QV2M : Specific humidity at 2 meters (in grams per kilogram).
  • WS50M : Wind speed at 50 meters (in meters per second).
  • LON : Longitude.
  • DISTRICT_INDEX : Numerical index representing the district.
  • LAT : Latitude.
  • PS : Surface pressure (in pascals).
  • PRECTOTCORR : Corrected total precipitation (in millimeters).
  • YEAR : Year.
  • T2M_RANGE : Temperature range at 2 meters (in degrees Celsius).
  • DY : Day.
  • WS10M_MIN : Minimum wind speed at 10 meters (in meters per second).

Dataset Information:

  • Rows: 125,060
  • Columns: 25
  • Memory Usage: 23.9 MB

About LSTM Algo:

Explaination

LSTM (Long Short-Term Memory) is a type of recurrent neural network (RNN) designed for sequence prediction. In our project, LSTM is applied to time-series meteorological data to learn patterns and predict heat index.

Application

  • Meteorological Forecasting
  • Public Health Planning
  • Urban Planning for Heat Resilience
  • Agriculture Heat Stress Monitoring
  • Energy Consumption Forecasting
  • Outdoor Event Planning

Advantages

  • Captures Long-Term Dependencies
  • Handles Time-Series Data Effectively
  • Suitable for Complex Patterns
  • Avoids Vanishing Gradient Problem
  • Allows End-to-End Learning

Limitations

  • Requires Sufficient Data
  • May Overfit with Limited Data
  • Computationally Intensive
  • Hyperparameter Sensitivity
  • Limited Interpretability

Future Scope

  • Enhance Model Robustness
  • Incorporate Additional Features
  • Explore Ensemble Approaches
  • Integrate Real-Time Data
  • Extend to Multiple Locations

--------------------------------------------------------------

Model 1: (8 Feature)

  • selected_features : ['T2M', 'T_Fahrenheit', 'TS', 'T2M_MIN', 'T2M_MAX', 'T2MWET', 'WS10M_RANGE', 'DISTRICT_INDEX']

  • input_data : pd.DataFrame({ 'T2M': [0.325153], 'T_Fahrenheit': [72.91], 'TS': [0.336126], 'T2M_MIN': [0.431715], 'T2M_MAX': [0.305014], 'T2MWET': [0.631997], 'WS10M_RANGE': [0.164191], 'DISTRICT_INDEX': [10], })

  • Output Predicted HEAT_INDEX: 73.28 Actual HEAT_INDEX: 74.71 Mean Absolute Error: 1.430001 %

Model 2: (4 Feature)

  • selected_features : ['T2M','RH2M', 'T2MDEW', 'WD10M']

  • input_data : pd.DataFrame({ 'T2M': [0.325153], 'RH2M': [0.733267], 'T2MDEW': [0.766538], 'WD10M': [0.614839], })

  • Output Predicted HEAT_INDEX: 74.79 Actual HEAT_INDEX: 74.71 Mean Absolute Error: 0.080001 %

Model 3: (25 Feature)

  • selected_features : ['T2M', 'T_Fahrenheit', 'TS', 'T2M_MIN', 'T2M_MAX', 'T2MWET', 'WS10M_RANGE', 'WD50M', 'WD10M', 'WS10M_MAX', 'RH2M', 'MO', 'WS10M', 'T2MDEW', 'QV2M', 'WS50M', 'LON', 'DISTRICT_INDEX', 'LAT', 'PS', 'PRECTOTCORR', 'YEAR', 'T2M_RANGE', 'DY', 'WS10M_MIN']

  • input_data : pd.DataFrame({ 'T2M' : [0.325153], 'T_Fahrenheit' : [72.91], 'TS' : [0.336126], 'T2M_MIN' : [0.431715], 'T2M_MAX' : [0.305014], 'T2MWET' : [0.631997], 'WS10M_RANGE' : [0.164191], 'WD50M' : [0.609584], 'WD10M' : [0.614839], 'WS10M_MAX' : [0.175806], 'RH2M' : [0.733267], 'MO' : [1], 'WS10M' : [0.176881], 'T2MDEW' : [0.766538], 'QV2M' : [0.549058], 'WS50M' : [0.208062], 'LON' : [79.293], 'DISTRICT_INDEX' : [10], 'LAT' : [19.366], 'PS' : [0.43377], 'PRECTOTCORR' : [0.031997], 'YEAR' : [2001], 'T2M_RANGE' : [0.367852], 'DY' : [1], 'WS10M_MIN' : [0.139295], })

  • Output Predicted HEAT_INDEX: 73.8 Actual HEAT_INDEX: 74.71 Mean Absolute Error: 0.909997 %

About

District-HeatIndex-Predication-using-LSTM

License:MIT License


Languages

Language:Jupyter Notebook 83.2%Language:Python 16.8%