Anikily / DenseCL

Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Dense Contrastive Learning for Self-Supervised Visual Pre-Training

This project hosts the code for implementing the DenseCL algorithm for self-supervised representation learning.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training,
Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, Lei Li
In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2021
arXiv preprint (arXiv 2011.09157)

highlights2

Highlights

  • Boosting dense predictions: DenseCL pre-trained models largely benefit dense prediction tasks including object detection and semantic segmentation (up to +2% AP and +3% mIoU).
  • Simple implementation: The core part of DenseCL can be implemented in 10 lines of code, thus being easy to use and modify.
  • Flexible usage: DenseCL is decoupled from the data pre-processing, thus enabling fast and flexible training while being agnostic about what kind of augmentation is used and how the images are sampled.
  • Efficient training: Our method introduces negligible computation overhead (only <1% slower) compared to the baseline method.

highlights

Updates

  • Code and pre-trained models of DenseCL are released. (02/03/2021)

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Models

For your convenience, we provide the following pre-trained models on COCO or ImageNet.

pre-train method pre-train dataset backbone #epoch training time VOC det VOC seg Link
Supervised ImageNet ResNet-50 - - 54.2 67.7 download
MoCo-v2 COCO ResNet-50 800 1.0d 54.7 64.5 download
DenseCL COCO ResNet-50 800 1.0d 56.7 67.5 download
DenseCL COCO ResNet-50 1600 2.0d 57.2 68.0 download
MoCo-v2 ImageNet ResNet-50 200 2.3d 57.0 67.5 download
DenseCL ImageNet ResNet-50 200 2.3d 58.7 69.4 download
DenseCL ImageNet ResNet-101 200 4.3d 61.3 74.1 download

Note:

  • The metrics for VOC det and seg are AP (COCO-style) and mIoU. The results are averaged over 5 trials.
  • The training time is measured on 8 V100 GPUs.
  • See our paper for more results on different benchmarks.

Usage

Training

./tools/dist_train.sh configs/selfsup/densecl/densecl_coco_800ep.py 8

Extracting Backbone Weights

WORK_DIR=work_dirs/selfsup/densecl/densecl_coco_800ep/
CHECKPOINT=${WORK_DIR}/epoch_800.pth
WEIGHT_FILE=${WORK_DIR}/extracted_densecl_coco_800ep.pth

python tools/extract_backbone_weights.py ${CHECKPOINT} ${WEIGHT_FILE}

Transferring to Object Detection and Segmentation

Please refer to README.md for transferring to object detection and semantic segmentation.

Tips

  • After extracting the backbone weights, the model can be used to replace the original ImageNet pre-trained model as initialization for many dense prediction tasks.
  • If your machine has a slow data loading issue, especially for ImageNet, your are suggested to convert ImageNet to lmdb format through folder2lmdb_imagenet.py, and use this config for training.

Acknowledgement

We would like to thank the OpenSelfSup for its open-source project and PyContrast for its detection evaluation configs.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follow.

@inproceedings{wang2020DenseCL,
  title={Dense Contrastive Learning for Self-Supervised Visual Pre-Training},
  author={Wang, Xinlong and Zhang, Rufeng and Shen, Chunhua and Kong, Tao and Li, Lei},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

About

Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

License:GNU General Public License v3.0


Languages

Language:Python 96.6%Language:Shell 3.4%