AndrewD1024 / deeplearning_forecast

Application of deep learning model (Temporal Fusion Transformer) to forecast time-series data

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Data preprocesing

# load data as pandas dataframe
data = get_stallion_data()  
# Make sur each row can be identified with a time step and a time series.
# add time index that is incremented by one for each time step.
data["time_idx"] = data["date"].dt.year * 12 + data["date"].dt.month
data["time_idx"] -= data["time_idx"].min()

# Add additional features
# categories have to be strings
data["month"] = data["date"].dt.month.astype(str).astype("category")
data["log_volume"] = np.log(data.volume + 1e-8)
data["avg_volume_by_sku"] = (data.groupby(["time_idx", "sku"], observed=True).volume.transform("mean"))
data["avg_volume_by_agency"] = (data.groupby(["time_idx", "agency"], observed=True).volume.transform("mean"))

# Encode special days as unique identifier
# first reverse one-hot encoding
special_days = [
    "easter_day", "good_friday", "new_year", "christmas",
    "labor_day", "independence_day", "revolution_day_memorial",
    "regional_games", "fifa_u_17_world_cup", "football_gold_cup",
    "beer_capital", "music_fest"
]
data[special_days] = (
    data[special_days]
    .apply(lambda x: x.map({0: "-", 1: x.name}))
    .astype("category")
)
# Sample data preview
data.sample(10, random_state=521)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
agency sku volume date industry_volume soda_volume avg_max_temp price_regular price_actual discount ... football_gold_cup beer_capital music_fest discount_in_percent timeseries time_idx month log_volume avg_volume_by_sku avg_volume_by_agency
291 Agency_25 SKU_03 0.5076 2013-01-01 492612703 718394219 25.845238 1264.162234 1152.473405 111.688829 ... - - - 8.835008 228 0 1 -0.678062 1225.306376 99.650400
871 Agency_29 SKU_02 8.7480 2015-01-01 498567142 762225057 27.584615 1316.098485 1296.804924 19.293561 ... - - - 1.465966 177 24 1 2.168825 1634.434615 11.397086
19532 Agency_47 SKU_01 4.9680 2013-09-01 454252482 789624076 30.665957 1269.250000 1266.490490 2.759510 ... - - - 0.217413 322 8 9 1.603017 2625.472644 48.295650
2089 Agency_53 SKU_07 21.6825 2013-10-01 480693900 791658684 29.197727 1193.842373 1128.124395 65.717978 ... - beer_capital - 5.504745 240 9 10 3.076505 38.529107 2511.035175
9755 Agency_17 SKU_02 960.5520 2015-03-01 515468092 871204688 23.608120 1338.334248 1232.128069 106.206179 ... - - music_fest 7.935699 259 26 3 6.867508 2143.677462 396.022140
7561 Agency_05 SKU_03 1184.6535 2014-02-01 425528909 734443953 28.668254 1369.556376 1161.135214 208.421162 ... - - - 15.218151 21 13 2 7.077206 1566.643589 1881.866367
19204 Agency_11 SKU_05 5.5593 2017-08-01 623319783 1049868815 31.915385 1922.486644 1651.307674 271.178970 ... - - - 14.105636 17 55 8 1.715472 1385.225478 109.699200
8781 Agency_48 SKU_04 4275.1605 2013-03-01 509281531 892192092 26.767857 1761.258209 1546.059670 215.198539 ... - - music_fest 12.218455 151 2 3 8.360577 1757.950603 1925.272108
2540 Agency_07 SKU_21 0.0000 2015-10-01 544203593 761469815 28.987755 0.000000 0.000000 0.000000 ... - - - 0.000000 300 33 10 -18.420681 0.000000 2418.719550
12084 Agency_21 SKU_03 46.3608 2017-04-01 589969396 940912941 32.478910 1675.922116 1413.571789 262.350327 ... - - - 15.654088 181 51 4 3.836454 2034.293024 109.381800

10 rows × 31 columns

data.describe()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
volume industry_volume soda_volume avg_max_temp price_regular price_actual discount avg_population_2017 avg_yearly_household_income_2017 discount_in_percent timeseries time_idx log_volume avg_volume_by_sku avg_volume_by_agency
count 21000.000000 2.100000e+04 2.100000e+04 21000.000000 21000.000000 21000.000000 21000.000000 2.100000e+04 21000.000000 21000.000000 21000.00000 21000.000000 21000.000000 21000.000000 21000.000000
mean 1492.403982 5.439214e+08 8.512000e+08 28.612404 1451.536344 1267.347450 184.374146 1.045065e+06 151073.494286 10.574884 174.50000 29.500000 2.464118 1492.403982 1492.403982
std 2711.496882 6.288022e+07 7.824340e+07 3.972833 683.362417 587.757323 257.469968 9.291926e+05 50409.593114 9.590813 101.03829 17.318515 8.178218 1051.790829 1328.239698
min 0.000000 4.130518e+08 6.964015e+08 16.731034 0.000000 -3121.690141 0.000000 1.227100e+04 90240.000000 0.000000 0.00000 0.000000 -18.420681 0.000000 0.000000
25% 8.272388 5.090553e+08 7.890880e+08 25.374816 1311.547158 1178.365653 54.935108 6.018900e+04 110057.000000 3.749628 87.00000 14.750000 2.112923 932.285496 113.420250
50% 158.436000 5.512000e+08 8.649196e+08 28.479272 1495.174592 1324.695705 138.307225 1.232242e+06 131411.000000 8.948990 174.50000 29.500000 5.065351 1402.305264 1730.529771
75% 1774.793475 5.893715e+08 9.005551e+08 31.568405 1725.652080 1517.311427 272.298630 1.729177e+06 206553.000000 15.647058 262.00000 44.250000 7.481439 2195.362302 2595.316500
max 22526.610000 6.700157e+08 1.049869e+09 45.290476 19166.625000 4925.404000 19166.625000 3.137874e+06 247220.000000 226.740147 349.00000 59.000000 10.022453 4332.363750 5884.717375

Create dataset and dataloaders

# use the last six months as a validation set, and compare to forcast result
max_prediction_length = 6  # forecast 6 months
max_encoder_length = 24  # use 24 months of history
training_cutoff = data["time_idx"].max() - max_prediction_length

# Normalize data: scale each time series separately and indicate that values are always positive
from pytorch_forecasting.data import TimeSeriesDataSet, GroupNormalizer
# Create training set
training = TimeSeriesDataSet(
    data[lambda x: x.time_idx <= training_cutoff],
    time_idx="time_idx",
    target="volume",
    group_ids=["agency", "sku"],
    min_encoder_length=0,  # allow predictions without history
    max_encoder_length=max_encoder_length,
    min_prediction_length=1,
    max_prediction_length=max_prediction_length,
    static_categoricals=["agency", "sku"],
    static_reals=[
        "avg_population_2017",
        "avg_yearly_household_income_2017"
    ],
    time_varying_known_categoricals=["special_days", "month"],
    # group of categorical variables can be treated as
    # one variable --> special days' list
    variable_groups={"special_days": special_days},
    time_varying_known_reals=[
        "time_idx",
        "price_regular",
        "discount_in_percent"
    ],
    time_varying_unknown_categoricals=[],
    time_varying_unknown_reals=[
        "volume",
        "log_volume",
        "industry_volume",
        "soda_volume",
        "avg_max_temp",
        "avg_volume_by_agency",
        "avg_volume_by_sku",
    ],
    target_normalizer=GroupNormalizer(
        groups=["agency", "sku"], coerce_positive=1.0
    ),  # use softplus with beta=1.0 and normalize by group
    add_relative_time_idx=True,  # add as feature
    add_target_scales=True,  # add as feature
    add_encoder_length=True,  # add as feature
)
# create validation set (predict=True) which means to predict the
# last max_prediction_length points in time for each series
validation = TimeSeriesDataSet.from_dataset(
    training, data, predict=True, stop_randomization=True
)
# create dataloaders for model
batch_size = 128
train_dataloader = training.to_dataloader(
    train=True, batch_size=batch_size, num_workers=0
)
val_dataloader = validation.to_dataloader(
    train=False, batch_size=batch_size * 10, num_workers=0
)

Create Baseline Model as benchmark

import torch
from pytorch_forecasting import Baseline

# calculate baseline mean absolute error, i.e. predict next value as the last available value from the history
actuals = torch.cat([y for x, y in iter(val_dataloader)])
baseline_predictions = Baseline().predict(val_dataloader)
(actuals - baseline_predictions).abs().mean().item()
293.0088195800781

Find optimal learning rate

import pytorch_lightning as pl
from pytorch_forecasting.models import TemporalFusionTransformer
from pytorch_forecasting.metrics import QuantileLoss
pl.seed_everything(42)
trainer = pl.Trainer(
    gpus=0,
    # clipping gradients is a hyperparameter and important to prevent divergance
    # of the gradient for recurrent neural networks
    gradient_clip_val=0.1,
)


tft = TemporalFusionTransformer.from_dataset(
    training,
    learning_rate=0.03,# not meaningful for finding the learning rate but otherwise very important
    hidden_size=16,  # most important hyperparameter apart from learning rate
    # number of attention heads. Set to up to 4 for large datasets
    attention_head_size=1,
    dropout=0.1,  # between 0.1 and 0.3 are good values
    hidden_continuous_size=8,  # set to <= hidden_size
    output_size=7,  # 7 quantiles by default
    loss=QuantileLoss(),
    # reduce learning rate if no improvement in validation loss after x epochs
    reduce_on_plateau_patience=4,
)
GPU available: True, used: False
TPU available: False, using: 0 TPU cores
# Number of parameters in network
tft.size()
29625
res = trainer.lr_find(
    tft, train_dataloader=train_dataloader, val_dataloaders=val_dataloader, max_lr=10., min_lr=1e-6,
)

print(f"suggested learning rate: {res.suggestion()}")
fig = res.plot(show=True, suggest=True)
fig.show()
   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0     
1  | input_embeddings                   | ModuleDict                      | 1 K   
2  | prescalers                         | ModuleDict                      | 256   
3  | static_variable_selection          | VariableSelectionNetwork        | 3 K   
4  | encoder_variable_selection         | VariableSelectionNetwork        | 8 K   
5  | decoder_variable_selection         | VariableSelectionNetwork        | 2 K   
6  | static_context_variable_selection  | GatedResidualNetwork            | 1 K   
7  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1 K   
8  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1 K   
9  | static_context_enrichment          | GatedResidualNetwork            | 1 K   
10 | lstm_encoder                       | LSTM                            | 2 K   
11 | lstm_decoder                       | LSTM                            | 2 K   
12 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544   
13 | post_lstm_add_norm_encoder         | AddNorm                         | 32    
14 | static_enrichment                  | GatedResidualNetwork            | 1 K   
15 | multihead_attn                     | InterpretableMultiHeadAttention | 1 K   
16 | post_attn_gate_norm                | GateAddNorm                     | 576   
17 | pos_wise_ff                        | GatedResidualNetwork            | 1 K   
18 | pre_output_gate_norm               | GateAddNorm                     | 576   
19 | output_layer                       | Linear                          | 119   



HBox(children=(FloatProgress(value=0.0, description='Finding best initial lr', style=ProgressStyle(description…


Saving latest checkpoint..
LR finder stopped early due to diverging loss.


suggested learning rate: 0.15135612484362077

png

Optimal learning is lower than suggested learning rate, so learning rate used will be mark down a little bit, 0.03

Training the Temporal Fusion Transformer with PyTorch Lightning

from pytorch_lightning.callbacks import EarlyStopping, LearningRateLogger
from pytorch_lightning.loggers import TensorBoardLogger
# Halt training when loss metric does not improve on validation set
early_stop_callback = EarlyStopping(
    monitor="val_loss",
    min_delta=1e-4,
    patience=10,
    verbose=False,
    mode="min"
)

#Log data
lr_logger = LearningRateLogger()  # log the learning rate
logger = TensorBoardLogger("lightning_logs")  # log result to tensorboard

# create trainer using PyTorch Lightning
trainer = pl.Trainer(
    max_epochs=30,
    gpus=[0],  # 0 to train on CPU whereas [0] for GPU
    gradient_clip_val=0.1,
    early_stop_callback=early_stop_callback,
    limit_train_batches=30,  # running validation every 30 batches
    # fast_dev_run=True,  # comment in to quickly check for bugs
    callbacks=[lr_logger],
    logger=logger,
)

# initialise model
tft = TemporalFusionTransformer.from_dataset(
    training,
    learning_rate=0.03,
    hidden_size=16,  # biggest influence network size
    attention_head_size=1,
    dropout=0.1,
    hidden_continuous_size=8,
    output_size=7,  # QuantileLoss has 7 quantiles by default
    loss=QuantileLoss(),
    log_interval=10,  # log example every 10 batches
    reduce_on_plateau_patience=4,  # reduce learning automatically
)
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
CUDA_VISIBLE_DEVICES: [0]
# Number of parameters in network
tft.size()
29625
# fit network
trainer.fit(
    tft,
    train_dataloader=train_dataloader,
    val_dataloaders=val_dataloader
)
   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0     
1  | input_embeddings                   | ModuleDict                      | 1 K   
2  | prescalers                         | ModuleDict                      | 256   
3  | static_variable_selection          | VariableSelectionNetwork        | 3 K   
4  | encoder_variable_selection         | VariableSelectionNetwork        | 8 K   
5  | decoder_variable_selection         | VariableSelectionNetwork        | 2 K   
6  | static_context_variable_selection  | GatedResidualNetwork            | 1 K   
7  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1 K   
8  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1 K   
9  | static_context_enrichment          | GatedResidualNetwork            | 1 K   
10 | lstm_encoder                       | LSTM                            | 2 K   
11 | lstm_decoder                       | LSTM                            | 2 K   
12 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544   
13 | post_lstm_add_norm_encoder         | AddNorm                         | 32    
14 | static_enrichment                  | GatedResidualNetwork            | 1 K   
15 | multihead_attn                     | InterpretableMultiHeadAttention | 1 K   
16 | post_attn_gate_norm                | GateAddNorm                     | 576   
17 | pos_wise_ff                        | GatedResidualNetwork            | 1 K   
18 | pre_output_gate_norm               | GateAddNorm                     | 576   
19 | output_layer                       | Linear                          | 119   



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validation sanity check', layout=Layout…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Training', layout=Layout(flex='2'), max…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…



HBox(children=(FloatProgress(value=1.0, bar_style='info', description='Validating', layout=Layout(flex='2'), m…


Saving latest checkpoint..








1

Training data in Tensorboard (predictions on the training and validation set)

Evaluate the trained model

from pytorch_forecasting.metrics import MAE

# load the best model according to the validation loss (given that
# we use early stopping, this is not necessarily the last epoch)
best_model_path = trainer.checkpoint_callback.best_model_path
best_tft = TemporalFusionTransformer.load_from_checkpoint(best_model_path)
# calculate mean absolute error on validation set
actuals = torch.cat([y for x, y in iter(val_dataloader)])
predictions = best_tft.predict(val_dataloader)
(actuals - predictions).abs().mean()
tensor(249.1484)
MAE(predictions, actuals)
MAE()
# raw predictions are a dictionary from which all kind of information including quantiles can be extracted
raw_predictions, x = best_tft.predict(val_dataloader, mode="raw", return_x=True)
for idx in range(10):  # plot 10 examples
    best_tft.plot_prediction(x, raw_predictions, idx=idx, add_loss_to_title=True);

png

png

png

png

png

png

png

png

png

png

Worst Performers

Looking at the worst performers in terms of sMAPE gives us an idea where the model has issues with forecasting reliably

from pytorch_forecasting.metrics import SMAPE

# calcualte metric by which to display
predictions = best_tft.predict(val_dataloader)
mean_losses = SMAPE(reduction="none")(predictions, actuals).mean(1)
indices = mean_losses.argsort(descending=True)  # sort losses

# show 10 examples for demonstration purposes
for idx in range(10): # plot 10 examples
    best_tft.plot_prediction(x, raw_predictions, idx=indices[idx], add_loss_to_title=SMAPE());

png

png

png

png

png

png

png

png

png

png

actuals vs predictions

predictions, x = best_tft.predict(val_dataloader, return_x=True)
predictioans_vs_actuals = best_tft.calculate_prediction_actual_by_variable(x, predictions)
best_tft.plot_prediction_actual_by_variable(predictions_vs_actuals);

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

Interpret model

interpretation = best_tft.interpret_output(raw_predictions, reduction="sum")
best_tft.plot_interpretation(interpretation)
{'attention': <Figure size 432x288 with 1 Axes>,
 'static_variables': <Figure size 504x270 with 1 Axes>,
 'encoder_variables': <Figure size 504x378 with 1 Axes>,
 'decoder_variables': <Figure size 504x252 with 1 Axes>}

png

png

png

png

As observered, price related variables are the among the top 2 predictors for both encoder and decoder. Next, past observed volume is statistically proven to be the most important static and encoder variable. Time related variables seem to rather lless important, this may prove that recent data are more significant than the older ones.

Partial dependency

dependency = best_tft.predict_dependency(val_dataloader.dataset, "discount_in_percent", np.linspace(0, 30, 30), show_progress_bar=True, mode="dataframe")b
HBox(children=(FloatProgress(value=0.0, description='Predict', max=30.0, style=ProgressStyle(description_width…
# plotting median and 25% and 75% percentile
agg_dependency = dependency.groupby("discount_in_percent").normalized_prediction.agg(median="median", q25=lambda x: x.quantile(.25),  q75=lambda x: x.quantile(.75))
ax = agg_dependency.plot(y="median")
ax.fill_between(agg_dependency.index, agg_dependency.q25, agg_dependency.q75, alpha=.3);

png

Interpret model better (assume independence of features)

About

Application of deep learning model (Temporal Fusion Transformer) to forecast time-series data


Languages

Language:Jupyter Notebook 99.6%Language:Python 0.4%