Code for the paper Improving Online Continual Learning Performance and Stability With Temporal Ensemble, Soutif--Cormerais et. al., CoLLAs 2023.
The code is based on Pytorch and Avalanche.
Install pytorch with conda (Instructions)
install the environment and update it using the environment file
cd avalanchev3
conda env create -f environment.yml
conda env config vars set PYTHONPATH=online_ema.git_path:avalanchev3_path
Change the data directory DATADIR inside toolkit/dataset.py to match the one on your system
Create the results dir
To run single experiments, find the appropriate config file in config dir an run
python main_noboundaries.py --config config/experiment_config.yml
Add the EMA ensembling and parallel evaluation for more efficient continual evaluation
python main_noboundaries.py --config config/experiment_config.yml --mean_evaluation --parallel_evaluation --eval_every 1
Please check the License file listed in this repository.
@inproceedings{soutifcormerais2023improving,
title={Improving Online Continual Learning Performance and Stability with Temporal Ensembles},
author={Soutif--Cormerais, Albin and Carta, Antonio and Van de Weijer, Joost},
booktitle={Conference on Lifelong Learning Agents},
pages={828--845},
year={2023},
organization={PMLR}
}