3outeille / kernels

Load compute kernels from the Hub

Repository from Github https://github.com3outeille/kernelsRepository from Github https://github.com3outeille/kernels

kernels

kernel-builder logo

PyPI - Version GitHub tag Test kernels


The Kernel Hub allows Python libraries and applications to load compute kernels directly from the Hub. To support this kind of dynamic loading, Hub kernels differ from traditional Python kernel packages in that they are made to be:

  • Portable: a kernel can be loaded from paths outside PYTHONPATH.
  • Unique: multiple versions of the same kernel can be loaded in the same Python process.
  • Compatible: kernels must support all recent versions of Python and the different PyTorch build configurations (various CUDA versions and C++ ABIs). Furthermore, older C library versions must be supported.

πŸš€ Quick Start

Install the kernels package with pip (requires torch>=2.5 and CUDA):

pip install kernels

Here is how you would use the activation kernels from the Hugging Face Hub:

import torch

from kernels import get_kernel

# Download optimized kernels from the Hugging Face hub
activation = get_kernel("kernels-community/activation")

# Random tensor
x = torch.randn((10, 10), dtype=torch.float16, device="cuda")

# Run the kernel
y = torch.empty_like(x)
activation.gelu_fast(y, x)

print(y)

You can search for kernels on the Hub.

πŸ“š Documentation

About

Load compute kernels from the Hub

License:Apache License 2.0


Languages

Language:Python 99.1%Language:Nix 0.9%