zhouzaida / conda-build-examples

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Conda build examples

Conda-build contains commands and tools to use conda to build your own packages. It also provides helpful tools to constrain or pin versions in recipes. Building a conda package requires installing conda-build and creating a conda recipe. You then use the conda build command to build the conda package from the conda recipe.


Step1: Create a conda environment

conda create -n conda-build-examples python=3.7

Step2: Install conda-build

conda install conda-build

Build packages


This is a simple example of how to build a conda package.

git clone https://github.com/zhouzaida/conda-build-examples
cd conda-build-examples/example1
conda build ./recipe


This example is used to demonstrate how to infer the corresponding cudatoolkit version when installing PyTorch with conda.

git clone https://github.com/zhouzaida/conda-build-examples
cd conda-build-examples/example2
conda build ./recipe -c pytorch

Upload packages

Step1: Register an acount at https://anaconda.org/account/login

Step2: Install anaconda-client

conda install anaconda-client

Step3: Logging anaconda in terminal

ananconda login

Step4: Upload the package

anaconda upload anaconda upload /path/to/lltm-0.1.0-py3.7_torch1.10_cuda11.3_cudnn8.2.0_0.tar.bz2

Note: Replace /path/to/ with the actual path where you stored the package.

Step5: See packages at https://anaconda.org/zhouzaida/repo

Test packages

Test example1

conda install npop -c zhouzaida

Test example2

I uploaded two versions of lltm build with different PyTorch and CUDA versions.

The following commands will install lltm from lltm-0.1.0-py3.7_torch1.10_cuda11.3_cudnn8.2.0_0.tar.bz2.

conda install pytorch==1.10.0 cudatoolkit=11.3 -c pytorch
conda install lltm -c zhouzaida

The following commands will install lltm from lltm-0.1.0-py3.7_torch1.12_cuda11.3_cudnn8.3.2_0.tar.bz2.

conda install pytorch==1.12.0 cudatoolkit=11.3 -c pytorch
conda install lltm -c zhouzaida




Language:Cuda 61.3%Language:Python 19.2%Language:C++ 18.3%Language:Shell 1.2%