yoyoshuang / PICK-pytorch

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Home Page:https://arxiv.org/abs/2004.07464

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

PICK-PyTorch

***** Updated on Sep 17th, 2020: A training example on the large-scale document understanding dataset, DocBank, is now available. Please refer to examples/DocBank/README.md for more details. Thanks TengQi Ye for this contribution.*****

PyTorch reimplementation of "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020). This project is different from our original implementation.

Introduction

PICK is a framework that is effective and robust in handling complex documents layout for Key Information Extraction (KIE) by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Overall architecture shown follows.

Overall

Requirements

  • python = 3.6
  • torchvision = 0.6.1
  • tabulate = 0.8.7
  • overrides = 3.0.0
  • opencv_python = 4.3.0.36
  • numpy = 1.16.4
  • pandas = 1.0.5
  • allennlp = 1.0.0
  • torchtext = 0.6.0
  • tqdm = 4.47.0
  • torch = 1.5.1
pip install -r requirements.txt

Usage

Distributed training with config files

Modify the configurations in config.json and dist_train.sh files, then run:

bash dist_train.sh

The application will be launched via launch.py on a 4 GPU node with one process per GPU (recommend).

This is equivalent to

python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c config.json -d 1,2,3,4 --local_world_size 4

and is equivalent to specify indices of available GPUs by CUDA_VISIBLE_DEVICES instead of -d args

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c config.json --local_world_size 4

Similarly, it can be launched with a single process that spans all 4 GPUs (if node has 4 available GPUs) using (don't recommend):

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=1 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c config.json --local_world_size 1

Using Multiple Node

You can enable multi-node multi-GPU training by setting nnodes and node_rank args of the commandline line on every node. e.g., 2 nodes 4 gpus run as follows

Node 1, ip: 192.168.0.10, then run on node 1 as follows

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=2 --node_rank=0 --nproc_per_node=4 \
--master_addr=192.168.0.10 --master_port=5555 \
train.py -c config.json --local_world_size 4  

Node 2, ip: 192.168.0.15, then run on node 2 as follows

CUDA_VISIBLE_DEVICES=2,4,6,7 python -m torch.distributed.launch --nnodes=2 --node_rank=1 --nproc_per_node=4 \
--master_addr=192.168.0.10 --master_port=5555 \
train.py -c config.json --local_world_size 4  

Resuming from checkpoints

You can resume from a previously saved checkpoint by:

python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -d 1,2,3,4 --local_world_size 4 --resume path/to/checkpoint

Debug mode on one GPU/CPU training with config files

This option of training mode can debug code without distributed way. -dist must set to false to turn off distributed mode. -d specify which one gpu will be used.

python train.py -c config.json -d 1 -dist false

Testing from checkpoints

You can test from a previously saved checkpoint by:

python test.py --checkpoint path/to/checkpoint --boxes_transcripts path/to/boxes_transcripts \
               --images_path path/to/images_path --output_folder path/to/output_folder \
               --gpu 0 --batch_size 2

Customization

Training custom datasets

You can train your own datasets following the steps outlined below.

  1. Prepare the correct format of files as provided in data folder.
    • Please see data/README.md an instruction how to prepare the data in required format for PICK.
  2. Modify train_dataset and validation_dataset args in config.json file, including files_name, images_folder, boxes_and_transcripts_folder, entities_folder, iob_tagging_type and resized_image_size.
  3. Modify Entities_list in utils/entities_list.py file according to the entity type of your dataset.
  4. Modify MAX_BOXES_NUM and MAX_TRANSCRIPT_LEN in data_tuils/documents.py file. (Optional)

Note: The self-build datasets our paper used cannot be shared for patient privacy and proprietary issues.

Checkpoints

You can specify the name of the training session in config.json files:

"name": "PICK_Default",
"run_id": "test"

The checkpoints will be saved in save_dir/name/run_id_timestamp/checkpoint_epoch_n, with timestamp in mmdd_HHMMSS format.

A copy of config.json file will be saved in the same folder.

Note: checkpoints contain:

{
  'arch': arch,
  'epoch': epoch,
  'state_dict': self.model.state_dict(),
  'optimizer': self.optimizer.state_dict(),
  'monitor_best': self.monitor_best,
  'config': self.config
}

Tensorboard Visualization

This project supports Tensorboard visualization by using either torch.utils.tensorboard or TensorboardX.

  1. Install

    If you are using pytorch 1.1 or higher, install tensorboard by 'pip install tensorboard>=1.14.0'.

    Otherwise, you should install tensorboardx. Follow installation guide in TensorboardX.

  2. Run training

    Make sure that tensorboard option in the config file is turned on.

     "tensorboard" : true
    
  3. Open Tensorboard server

    Type tensorboard --logdir saved/log/ at the project root, then server will open at http://localhost:6006

By default, values of loss will be logged. If you need more visualizations, use add_scalar('tag', data), add_image('tag', image), etc in the trainer._train_epoch method. add_something() methods in this project are basically wrappers for those of tensorboardX.SummaryWriter and torch.utils.tensorboard.SummaryWriter modules.

Note: You don't have to specify current steps, since WriterTensorboard class defined at logger/visualization.py will track current steps.

Results on Train Ticket

example

TODOs

  • Dataset cache mechanism to speed up training loop
  • Multi-node multi-gpu setup (DistributedDataParallel)

Citations

If you find this code useful please cite our paper:

@inproceedings{Yu2020PICKPK,
  title={{PICK}: Processing Key Information Extraction from Documents using 
  Improved Graph Learning-Convolutional Networks},
  author={Wenwen Yu and Ning Lu and Xianbiao Qi and Ping Gong and Rong Xiao},
  booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
  year={2020}
}

License

This project is licensed under the MIT License. See LICENSE for more details.

Acknowledgements

This project structure takes example by PyTorch Template Project.

About

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

https://arxiv.org/abs/2004.07464

License:MIT License


Languages

Language:Python 99.8%Language:Shell 0.2%