xiaoerlaigeid / dl-DetectionSuite

Tool to create datasets and evaluate deeplearning detection models with them

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool


DeepLearning Suite is a set of tool that simplify the evaluation of most common object detection datasets with several object detection neural networks.

The idea is to offer a generic infrastructure to evaluates object detection algorithms againts a dataset and compute most common statistics:

  • Intersecion Over Union
  • Precision
  • Recall
Supported datasets formats:
  • YOLO
  • Jderobot recorder logs
  • Princeton RGB dataset [1]
  • Spinello dataset [2]
Supported object detection frameworks/algorithms
  • YOLO (darknet)
  • Background substraction

Sample generation Tool

Sample Generation Tool has been developed in order to simply the process of generation samples for datasets focused on object detection. The tools provides some features to reduce the time on labeling objects as rectangles.



   NVIDIA_GPGKEY_SUM=d1be581509378368edeec8c1eb2958702feedf3bc3d17011adbf24efacce4ab5 && \

     NVIDIA_GPGKEY_FPR=ae09fe4bbd223a84b2ccfce3f60f4b3d7fa2af80 && \
    sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub && \
    sudo apt-key adv --export --no-emit-version -a $NVIDIA_GPGKEY_FPR | tail -n +5 > cudasign.pub && \
     echo "$NVIDIA_GPGKEY_SUM  cudasign.pub" | sha256sum -c --strict - && rm cudasign.pub && \

     sudo sh -c 'echo "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64 /" > /etc/apt/sources.list.d/cuda.list' && \
     sudo sh -c 'echo "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list'

Update and Install

sudo apt-get update
sudo apt-get install -y cuda

Common deps

 sudo apt-get install -y build-essential git cmake rapidjson-dev libboost-dev sudo


sudo apt-get install libopencv-dev



    sudo apt-get install -y libboost-filesystem-dev libboost-system-dev libboost-thread-dev libeigen3-dev libgoogle-glog-dev \
          libgsl-dev libgtkgl2.0-dev libgtkmm-2.4-dev libglademm-2.4-dev libgnomecanvas2-dev libgoocanvasmm-2.0-dev libgnomecanvasmm-2.6-dev \
          libgtkglextmm-x11-1.2-dev libyaml-cpp-dev icestorm zeroc-ice libxml++2.6-dev qt5-default libqt5svg5-dev libtinyxml-dev \
          catkin libssl-dev

Jderobot ThirdParty libraries:

    git clone https://github.com/JdeRobot/ThirdParty

    cd ThirdParty
    cd qflightinstruments
    qmake  qfi.pro
    make -j4
    make install


    git clone https://github.com/JdeRobot/JdeRobot
    cd JdeRobot
    cmake . -DENABLE_ROS=OFF
    make -j4
    cmake .
    sudo make install

Darknet (jderobot fork)

Darknet supports both GPU and CPU builds, and GPU build is enabled by default. If your Computer doesn't have a NVIDIA Graphics card, then it is necessary to turn of GPU build in cmake by passing -DUSE_GPU=OFF as an option in cmake.

    git clone https://github.com/JdeRobot/darknet
    cd darknet
    mkdir build && cd build

For GPU users:


For Non-GPU users (CPU build):


make -j4
sudo make -j4 install

Change <DARKNET_DIR> to your custom installation path.

How to compile DL_DetectionSuite:

Once you have all the deps installed just:

    git clone https://github.com/JdeRobot/DeepLearningSuite
    cd DeepLearningSuite
    cd DeepLearningSuite/


Testing detectionsuite

As an example you can use Pascal VOC dataset on darknet format using the following instructions to convert to the desired format:

wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
wget https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
wget https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
tar xf VOCtrainval_11-May-2012.tar
tar xf VOCtrainval_06-Nov-2007.tar
tar xf VOCtest_06-Nov-2007.tar

wget https://pjreddie.com/media/files/voc_label.py
python voc_label.py
cat 2007_train.txt 2007_val.txt 2012_*.txt > train.txt

In order to use darknet to detect objectd over the images you have to download the network configuration and the network weights [5] and [6]. Then set the corresponding paths into DeepLearningSuite/appConfig.txt. You have also to create a file with the corresponding name for each class detection for darknet, you can download the file directly from [7]

Once you have your custom appConfig.txt you can run the DatasetEvaluationApp.


[1] http://tracking.cs.princeton.edu/dataset.html
[2] http://www2.informatik.uni-freiburg.de/~spinello/RGBD-dataset.html
[3] YOLO: https://pjreddie.com/darknet/yolo/
[4] YOLO with c++ API: https://github.com/jderobot/darknet
[5] https://pjreddie.com/media/files/yolo-voc.weights
[6] https://github.com/pjreddie/darknet/blob/master/cfg/yolo-voc.cfg
[7] https://github.com/pjreddie/darknet/blob/master/data/voc.names


Tool to create datasets and evaluate deeplearning detection models with them


Language:C++ 83.4%Language:CMake 10.0%Language:Python 6.5%Language:C 0.1%