vllm-project / vllm

A high-throughput and memory-efficient inference and serving engine for LLMs

Home Page:https://docs.vllm.ai

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

[Usage]: Why increase max-num-seqs will use less memory

TaChao opened this issue · comments

Your current environment

Collecting environment information...
PyTorch version: 2.1.2+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.27.6
Libc version: glibc-2.35

Python version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-4.18.7-1.el7.elrepo.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 4090
GPU 1: NVIDIA GeForce RTX 4090
GPU 2: NVIDIA GeForce RTX 4090
GPU 3: NVIDIA GeForce RTX 4090

Nvidia driver version: 550.54.14
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.5
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.5
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   46 bits physical, 48 bits virtual
Byte Order:                      Little Endian
CPU(s):                          48
On-line CPU(s) list:             0-47
Vendor ID:                       GenuineIntel
Model name:                      Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz
CPU family:                      6
Model:                           85
Thread(s) per core:              2
Core(s) per socket:              12
Socket(s):                       2
Stepping:                        4
CPU max MHz:                     3000.0000
CPU min MHz:                     800.0000
BogoMIPS:                        4200.00
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke flush_l1d
Virtualization:                  VT-x
L1d cache:                       768 KiB (24 instances)
L1i cache:                       768 KiB (24 instances)
L2 cache:                        24 MiB (24 instances)
L3 cache:                        33 MiB (2 instances)
NUMA node(s):                    2
NUMA node0 CPU(s):               0-11,24-35
NUMA node1 CPU(s):               12-23,36-47
Vulnerability L1tf:              Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable
Vulnerability Meltdown:          Mitigation; PTI
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Full generic retpoline, IBPB, IBRS_FW

Versions of relevant libraries:
[pip3] numpy==1.22.2
[pip3] onnx==1.14.0
[pip3] pytorch-quantization==2.1.2
[pip3] torch==2.1.2
[pip3] torch-tensorrt==0.0.0
[pip3] torchdata==0.7.0a0
[pip3] torchtext==0.16.0a0
[pip3] torchvision==0.16.0a0
[pip3] triton==2.1.0+e621604
[conda] Could not collectROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.3.0
vLLM Build Flags:
CUDA Archs: 5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0	GPU1	GPU2	GPU3	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	PIX	SYS	SYS	0-11,24-35	0		N/A
GPU1	PIX	 X 	SYS	SYS	0-11,24-35	0		N/A
GPU2	SYS	SYS	 X 	PIX	0-11,24-35	0		N/A
GPU3	SYS	SYS	PIX	 X 	0-11,24-35	0		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

How would you like to use vllm

How max-num-seqs control GPU mem useage? Why increase max-num-seqs will use less memory?
With my test:

max-num-seqs GPU mem(Gib)
256 20.6
2048 19
4096 13

Maybe it's compiling more efficient cuda graphs when --max-num-seqs is increased.

Do you see the same memory reduction when also using --enforce-eager? (This would confirm my cuda graphs theory)