SLDGroup / MobileViG

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

MobileViG

MobileViG: Graph-Based Sparse Attention for Mobile Vision Applications

PDF | Arxiv

GAIN 2024 Best Poster Award

Mustafa Munir, William Avery, and Radu Marculescu

Overview

This repository contains the source code for MobileViG: Graph-Based Sparse Attention for Mobile Vision Applications

Pretrained Models

Weights trained on ImageNet-1K can be downloaded here.

Weights trained on COCO 2017 Object Detection and Instance Segmentation can be downloaded here.

detection

Contains all of the object detection and instance segmentation results, backbone code, and config.

models

Contains the main MobileViG model code.

util

Contains utility scripts used in MobileViG.

Usage

Installation Image Classification

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge
conda install mpi4py
pip install -r requirements.txt

Image Classification

Train image classification:

python -m torch.distributed.launch --nproc_per_node=num_GPUs --nnodes=num_nodes --use_env main.py --data-path /path/to/imagenet --model mobilevig_model --output_dir mobilevig_results

For example:

python -m torch.distributed.launch --nproc_per_node=1 --nnodes=1 --use_env main.py --data-path ../../Datasets/ILSVRC/Data/CLS-LOC/ --model mobilevig_m --output_dir mobilevig_test_results

Test image classification:

python -m torch.distributed.launch --nproc_per_node=num_GPUs --nnodes=num_nodes --use_env main.py --data-path /path/to/imagenet --model mobilevig_model --resume pretrained_model --eval

For example:

python -m torch.distributed.launch --nproc_per_node=1 --nnodes=1 --use_env main.py --data-path ../../Datasets/ILSVRC/Data/CLS-LOC/ --model mobilevig_s --resume Pretrained_Models_MobileViG/MobileViG_S_78_2.pth.tar --eval

Installation Object Detection and Instance Segmentation

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge
pip install timm
pip install submitit
pip install -U openmim
mim install mmcv-full
mim install mmdet==2.28

Object Detection and Instance Segmentation

Detection and instance segmentation on MS COCO 2017 is implemented based on MMDetection. We follow settings and hyper-parameters of PVT, PoolFormer, and EfficientFormer for comparison.

All commands for object detection and instance segmentation should be run from the MobileViG/detection/ directory.

Data preparation

Prepare COCO 2017 dataset according to the instructions in MMDetection.

ImageNet Pretraining

Put ImageNet-1K pretrained weights of backbone as

MobileViG
├── Final_Results
│   ├── model
│   │   ├── model.pth.tar
│   │   ├── ...

Train object detection and instance segmentation:

python -m torch.distributed.launch --nproc_per_node num_GPUs --nnodes=num_nodes --node_rank 0 main.py configs/mask_rcnn_mobilevig_model --mobilevig_model mobilevig_model --work-dir Output_Directory --launcher pytorch > Output_Directory/log_file.txt 

For example:

python -m torch.distributed.launch --nproc_per_node 2 --nnodes 1 --node_rank 0 main.py configs/mask_rcnn_mobilevig_m_fpn_1x_coco.py --mobilevig_model mobilevig_m --work-dir detection_results/ --launcher pytorch > detection_results/mobilevig_m_run_test.txt 

Test object detection and instance segmentation:

python -m torch.distributed.launch --nproc_per_node=num_GPUs --nnodes=num_nodes --node_rank 0 test.py configs/mask_rcnn_mobilevig_model --checkpoint Pretrained_Model --eval {bbox or segm} --work-dir Output_Directory --launcher pytorch > log_file.txt

For example:

python -m torch.distributed.launch --nproc_per_node=4 --nnodes=1 --node_rank 0 test.py configs/mask_rcnn_mobilevig_m_fpn_1x_coco.py --checkpoint ../Pretrained_Models_MobileViG/Detection/det_mobilevig_m_62_8.pth --eval bbox --work-dir detection_results/ --launcher pytorch > detection_results/mobilevig_m_run_evaluation.txt

Citation

If our code or models help your work, please cite MobileViG (CVPRW 2023), MobileViGv2 (CVPRW 2024), and GreedyViG (CVPR 2024):

@InProceedings{mobilevig2023,
    author    = {Munir, Mustafa and Avery, William and Marculescu, Radu},
    title     = {MobileViG: Graph-Based Sparse Attention for Mobile Vision Applications},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2023},
    pages     = {2211-2219}
}
@InProceedings{MobileViGv2_2024,
    author    = {Avery, William and Munir, Mustafa and Marculescu, Radu},
    title     = {Scaling Graph Convolutions for Mobile Vision},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2024},
    pages     = {5857-5865}
}
@InProceedings{GreedyViG_2024_CVPR,
    author    = {Munir, Mustafa and Avery, William and Rahman, Md Mostafijur and Marculescu, Radu},
    title     = {GreedyViG: Dynamic Axial Graph Construction for Efficient Vision GNNs},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2024},
    pages     = {6118-6127}
}

About

License:Apache License 2.0


Languages

Language:Python 100.0%