Mustafa Munir, William Avery, and Radu Marculescu
This repository contains the source code for MobileViG: Graph-Based Sparse Attention for Mobile Vision Applications
Weights trained on ImageNet-1K can be downloaded here.
Weights trained on COCO 2017 Object Detection and Instance Segmentation can be downloaded here.
Contains all of the object detection and instance segmentation results, backbone code, and config.
Contains the main MobileViG model code.
Contains utility scripts used in MobileViG.
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge
conda install mpi4py
pip install -r requirements.txt
python -m torch.distributed.launch --nproc_per_node=num_GPUs --nnodes=num_nodes --use_env main.py --data-path /path/to/imagenet --model mobilevig_model --output_dir mobilevig_results
For example:
python -m torch.distributed.launch --nproc_per_node=1 --nnodes=1 --use_env main.py --data-path ../../Datasets/ILSVRC/Data/CLS-LOC/ --model mobilevig_m --output_dir mobilevig_test_results
python -m torch.distributed.launch --nproc_per_node=num_GPUs --nnodes=num_nodes --use_env main.py --data-path /path/to/imagenet --model mobilevig_model --resume pretrained_model --eval
For example:
python -m torch.distributed.launch --nproc_per_node=1 --nnodes=1 --use_env main.py --data-path ../../Datasets/ILSVRC/Data/CLS-LOC/ --model mobilevig_s --resume Pretrained_Models_MobileViG/MobileViG_S_78_2.pth.tar --eval
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge
pip install timm
pip install submitit
pip install -U openmim
mim install mmcv-full
mim install mmdet==2.28
Detection and instance segmentation on MS COCO 2017 is implemented based on MMDetection. We follow settings and hyper-parameters of PVT, PoolFormer, and EfficientFormer for comparison.
All commands for object detection and instance segmentation should be run from the MobileViG/detection/ directory.
Prepare COCO 2017 dataset according to the instructions in MMDetection.
Put ImageNet-1K pretrained weights of backbone as
MobileViG
├── Final_Results
│ ├── model
│ │ ├── model.pth.tar
│ │ ├── ...
python -m torch.distributed.launch --nproc_per_node num_GPUs --nnodes=num_nodes --node_rank 0 main.py configs/mask_rcnn_mobilevig_model --mobilevig_model mobilevig_model --work-dir Output_Directory --launcher pytorch > Output_Directory/log_file.txt
For example:
python -m torch.distributed.launch --nproc_per_node 2 --nnodes 1 --node_rank 0 main.py configs/mask_rcnn_mobilevig_m_fpn_1x_coco.py --mobilevig_model mobilevig_m --work-dir detection_results/ --launcher pytorch > detection_results/mobilevig_m_run_test.txt
python -m torch.distributed.launch --nproc_per_node=num_GPUs --nnodes=num_nodes --node_rank 0 test.py configs/mask_rcnn_mobilevig_model --checkpoint Pretrained_Model --eval {bbox or segm} --work-dir Output_Directory --launcher pytorch > log_file.txt
For example:
python -m torch.distributed.launch --nproc_per_node=4 --nnodes=1 --node_rank 0 test.py configs/mask_rcnn_mobilevig_m_fpn_1x_coco.py --checkpoint ../Pretrained_Models_MobileViG/Detection/det_mobilevig_m_62_8.pth --eval bbox --work-dir detection_results/ --launcher pytorch > detection_results/mobilevig_m_run_evaluation.txt
If our code or models help your work, please cite MobileViG (CVPRW 2023), MobileViGv2 (CVPRW 2024), and GreedyViG (CVPR 2024):
@InProceedings{mobilevig2023,
author = {Munir, Mustafa and Avery, William and Marculescu, Radu},
title = {MobileViG: Graph-Based Sparse Attention for Mobile Vision Applications},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2023},
pages = {2211-2219}
}
@InProceedings{MobileViGv2_2024,
author = {Avery, William and Munir, Mustafa and Marculescu, Radu},
title = {Scaling Graph Convolutions for Mobile Vision},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2024},
pages = {5857-5865}
}
@InProceedings{GreedyViG_2024_CVPR,
author = {Munir, Mustafa and Avery, William and Rahman, Md Mostafijur and Marculescu, Radu},
title = {GreedyViG: Dynamic Axial Graph Construction for Efficient Vision GNNs},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {6118-6127}
}