sisterAn / JavaScript-Algorithms

基础理论+JS框架应用+实践,从0到1构建整个前端算法体系

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

字节&leetcode70:爬楼梯问题

sisterAn opened this issue · comments

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意: 给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1  + 1 
2. 2 

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1  + 1  + 1 
2. 1  + 2 
3. 2  + 1 

附赠leetcode地址:leetcode

解法:动态规划

动态规划(Dynamic Programming,DP)是一种将复杂问题分解成小问题求解的策略,但与分治算法不同的是,分治算法要求各子问题是相互独立的,而动态规划各子问题是相互关联的。

分治,顾名思义,就是分而治之,将一个复杂的问题,分成两个或多个相似的子问题,在把子问题分成更小的子问题,直到更小的子问题可以简单求解,求解子问题,则原问题的解则为子问题解的合并。

我们使用动态规划求解问题时,需要遵循以下几个重要步骤:

  • 定义子问题
  • 实现需要反复执行解决的子子问题部分
  • 识别并求解出边界条件

第一步:定义子问题

如果用 dp[n] 表示第 n 级台阶的方案数,并且由题目知:最后一步可能迈 2 个台阶,也可迈 1 个台阶,即第 n 级台阶的方案数等于第 n-1 级台阶的方案数加上第 n-2 级台阶的方案数

第二步:实现需要反复执行解决的子子问题部分

dp[n] = dp[n−1] + dp[n−2]

第三步:识别并求解出边界条件

// 第 0 级 1 种方案 
dp[0]=1 
// 第 1 级也是 1 种方案 
dp[1]=1

最后一步:把尾码翻译成代码,处理一些边界情况

let climbStairs = function(n) {
    let dp = [1, 1]
    for(let i = 2; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2]
    }
    return dp[n]
}

复杂度分析:

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

优化空间复杂度:

let climbStairs = function(n) {
    let res = 1, n1 = 1, n2 = 1
    for(let i = 2; i <= n; i++) {
        res = n1 + n2
        n1 = n2
        n2 = res
    }
    return res
}

空间复杂度:O(1)

leetcode

function bar(nums) {
  if (nums === 0 || nums === 1) return 1;
  return bar(nums - 1) + bar(nums - 2);
}
function foo(nums) {
  const list = [1, 1];
  for (let i = 2; i <= nums; i += 1) {
    list[i] = list[i - 1] + list[i - 2];
  }
  return list[nums];
}
const res2 = foo(40);
const res = bar(40);

console.log(res === res2);

这个问题好像就是斐波那契数列,动态规划是一种解法,也可以用尾递归

function fib(n, ac1=1, ac2=1) {
  if (n <= 2) return ac2
  return fib(n-1, ac2, ac1+ac2)
}