pengzhiliang / Conformer

Official code for Conformer: Local Features Coupling Global Representations for Visual Recognition

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

transformer 分支是否需要强监督。

13354236170 opened this issue · comments

image
你好,请问是否有实验,transformer 分支不进行loss 监督的消融实验呢?从模型结构来看,conv 层的特征已经融合了transformer 特征,如果只监督conv 分支,结果如何呢?我这边在检测DBnet的backbone 中使用了conformer 结构,但是最后只监督了conv 这个分支,结果没有优于原来,可能也和其他变量相关。

你好~,谢谢您的尝试。我们在分类上没有做过只监督一个分支的实验,所以无法给出结论,抱歉。如果是检测上的话,我们的检测实验均是把CNN分支的输出作为FPN的输入,结果上是没有问题的(不论是单阶段还是双阶段,有无anchor之类的算法都试过,2~5 map的提升都是有的)。至于在DBNet结果没有优于原来,也许正如您所说的与其他因素相关。因为我也对DBNet算法也不太熟悉,所以无法给出有效建议,抱歉~

您好,感谢回答,我这边在db 检测模型上,也是把cnn 的分支作为了fpn 的输入,单阶段模型。我这边使用了conformer 的默认参数,可能stage 比较多(12stage),2卡训练(单卡batch=2),所以batch 远远小于原来的模型,可能是这个原因,请问您这边在检测模型上ConvTransBlock 用了多少个stage ,batch 可以达到多少呢?

同样也是12个,检测里面的backbone代码如下,更多的参数这两天我整理后会更新一下,谢谢~

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

import math
import warnings

from mmdet.utils import get_root_logger
from mmcv.runner import load_checkpoint
from ..builder import BACKBONES

_DEFAULT_SCALE_CLAMP = math.log(100000.0 / 16)

import pdb

def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor

def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    # type: (Tensor, float, float, float, float) -> Tensor
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)

class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return self.drop_path(x, self.drop_prob, self.training)

    def drop_path(self, x, drop_prob: float = 0., training: bool = False):
        """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

        This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
        the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
        See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
        changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
        'survival rate' as the argument.

        """
        if drop_prob == 0. or not training:
            return x
        keep_prob = 1 - drop_prob
        shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
        random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
        random_tensor.floor_()  # binarize
        output = x.div(keep_prob) * random_tensor
        return output

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=partial(nn.LayerNorm, eps=1e-6)):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class ConvBlock(nn.Module):

    def __init__(self, inplanes, outplanes, stride=1, res_conv=False, act_layer=nn.ReLU, groups=1,
                 norm_layer=partial(nn.BatchNorm2d, eps=1e-6), drop_block=None, drop_path=None):
        super(ConvBlock, self).__init__()

        expansion = 4
        med_planes = outplanes // expansion

        self.conv1 = nn.Conv2d(inplanes, med_planes, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn1 = norm_layer(med_planes)
        self.act1 = act_layer(inplace=True)

        self.conv2 = nn.Conv2d(med_planes, med_planes, kernel_size=3, stride=stride, groups=groups, padding=1, bias=False)
        self.bn2 = norm_layer(med_planes)
        self.act2 = act_layer(inplace=True)

        self.conv3 = nn.Conv2d(med_planes, outplanes, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn3 = norm_layer(outplanes)
        self.act3 = act_layer(inplace=True)

        if res_conv:
            self.residual_conv = nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=stride, padding=0, bias=False)
            self.residual_bn = norm_layer(outplanes)

        self.res_conv = res_conv
        self.drop_block = drop_block
        self.drop_path = drop_path

    def zero_init_last_bn(self):
        nn.init.zeros_(self.bn3.weight)

    def forward(self, x, x_t=None, return_x_2=True):
        residual = x

        x = self.conv1(x)
        x = self.bn1(x)
        if self.drop_block is not None:
            x = self.drop_block(x)
        x = self.act1(x)

        x = self.conv2(x) if x_t is None else self.conv2(x + x_t)
        x = self.bn2(x)
        if self.drop_block is not None:
            x = self.drop_block(x)
        x2 = self.act2(x)

        x = self.conv3(x2)
        x = self.bn3(x)
        if self.drop_block is not None:
            x = self.drop_block(x)

        if self.drop_path is not None:
            x = self.drop_path(x)

        if self.res_conv:
            residual = self.residual_conv(residual)
            residual = self.residual_bn(residual)

        x += residual
        x = self.act3(x)

        if return_x_2:
            return x, x2
        else:
            return x


class FCUDown(nn.Module):
    """ CNN feature maps -> Transformer patch embeddings
    """

    def __init__(self, inplanes, outplanes, dw_stride, act_layer=nn.GELU,
                 norm_layer=partial(nn.LayerNorm, eps=1e-6)):
        super(FCUDown, self).__init__()
        self.dw_stride = dw_stride

        self.conv_project = nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=1, padding=0)
        self.sample_pooling = nn.AvgPool2d(kernel_size=dw_stride, stride=dw_stride)

        self.ln = norm_layer(outplanes)
        self.act = act_layer()

    def forward(self, x, x_t):
        x = self.conv_project(x)  # [N, C, H, W]

        x = self.sample_pooling(x).flatten(2).transpose(1, 2)
        x = self.ln(x)
        x = self.act(x)

        x = torch.cat([x_t[:, 0][:, None, :], x], dim=1)

        return x


class FCUUp(nn.Module):
    """ Transformer patch embeddings -> CNN feature maps
    """

    def __init__(self, inplanes, outplanes, up_stride, act_layer=nn.ReLU,
                 norm_layer=partial(nn.BatchNorm2d, eps=1e-6),):
        super(FCUUp, self).__init__()

        self.up_stride = up_stride
        self.conv_project = nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=1, padding=0)
        self.bn = norm_layer(outplanes)
        self.act = act_layer()

    def forward(self, x, H, W):
        B, _, C = x.shape
        # [N, 197, 384] -> [N, 196, 384] -> [N, 384, 196] -> [N, 384, 14, 14]
        x_r = x[:, 1:].transpose(1, 2).reshape(B, C, H, W)
        x_r = self.act(self.bn(self.conv_project(x_r)))

        return F.interpolate(x_r, size=(H * self.up_stride, W * self.up_stride))


class Med_ConvBlock(nn.Module):
    """ special case for Convblock with down sampling,
    """
    def __init__(self, inplanes, act_layer=nn.ReLU, groups=1, norm_layer=partial(nn.BatchNorm2d, eps=1e-6),
                 drop_block=None, drop_path=None):

        super(Med_ConvBlock, self).__init__()

        expansion = 4
        med_planes = inplanes // expansion

        self.conv1 = nn.Conv2d(inplanes, med_planes, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn1 = norm_layer(med_planes)
        self.act1 = act_layer(inplace=True)

        self.conv2 = nn.Conv2d(med_planes, med_planes, kernel_size=3, stride=1, groups=groups, padding=1, bias=False)
        self.bn2 = norm_layer(med_planes)
        self.act2 = act_layer(inplace=True)

        self.conv3 = nn.Conv2d(med_planes, inplanes, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn3 = norm_layer(inplanes)
        self.act3 = act_layer(inplace=True)

        self.drop_block = drop_block
        self.drop_path = drop_path

    def zero_init_last_bn(self):
        nn.init.zeros_(self.bn3.weight)

    def forward(self, x):
        residual = x

        x = self.conv1(x)
        x = self.bn1(x)
        if self.drop_block is not None:
            x = self.drop_block(x)
        x = self.act1(x)

        x = self.conv2(x)
        x = self.bn2(x)
        if self.drop_block is not None:
            x = self.drop_block(x)
        x = self.act2(x)

        x = self.conv3(x)
        x = self.bn3(x)
        if self.drop_block is not None:
            x = self.drop_block(x)

        if self.drop_path is not None:
            x = self.drop_path(x)

        x += residual
        x = self.act3(x)

        return x


class ConvTransBlock(nn.Module):
    """
    Basic module for Conformer, keep feature maps for CNN block and patch embeddings for transformer encoder block
    """

    def __init__(self, inplanes, outplanes, res_conv, stride, dw_stride, embed_dim, num_heads=12, mlp_ratio=4.,
                 qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
                 last_fusion=False, num_med_block=0, groups=1):

        super(ConvTransBlock, self).__init__()
        expansion = 4
        self.cnn_block = ConvBlock(inplanes=inplanes, outplanes=outplanes, res_conv=res_conv, stride=stride, groups=groups)

        if last_fusion:
            self.fusion_block = ConvBlock(inplanes=outplanes, outplanes=outplanes, stride=2, res_conv=True, groups=groups)
        else:
            self.fusion_block = ConvBlock(inplanes=outplanes, outplanes=outplanes, groups=groups)

        if num_med_block > 0:
            self.med_block = []
            for i in range(num_med_block):
                self.med_block.append(Med_ConvBlock(inplanes=outplanes, groups=groups))
            self.med_block = nn.ModuleList(self.med_block)

        self.squeeze_block = FCUDown(inplanes=outplanes // expansion, outplanes=embed_dim, dw_stride=dw_stride)

        self.expand_block = FCUUp(inplanes=embed_dim, outplanes=outplanes // expansion, up_stride=dw_stride)

        self.trans_block = Block(
            dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_rate)

        self.dw_stride = dw_stride
        self.embed_dim = embed_dim
        self.num_med_block = num_med_block
        self.last_fusion = last_fusion

    def forward(self, x, x_t):
        x, x2 = self.cnn_block(x)

        _, _, H, W = x2.shape

        x_st = self.squeeze_block(x2, x_t)

        x_t = self.trans_block(x_st + x_t)

        if self.num_med_block > 0:
            for m in self.med_block:
                x = m(x)

        x_t_r = self.expand_block(x_t, H // self.dw_stride, W // self.dw_stride)
        x = self.fusion_block(x, x_t_r, return_x_2=False)

        return x, x_t

@BACKBONES.register_module()
class Conformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """

    def __init__(self, patch_size=16, in_chans=3, num_classes=1000, base_channel=64, channel_ratio=4, num_med_block=0,
                 embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0., norm_eval=True, frozen_stages=1, return_cls_token=False):

        # Transformer
        super().__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.return_cls_token = return_cls_token

        self.norm_eval = norm_eval
        self.frozen_stages = frozen_stages

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))

        self.trans_dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule

        # Classifiers
        if self.return_cls_token:
            self.trans_norm = nn.LayerNorm(embed_dim)
            self.trans_cls_head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
        # self.pooling = nn.AdaptiveAvgPool2d(1)
        # self.conv_cls_head = nn.Linear(1024, num_classes)

        # Stem stage: get the feature maps by conv block (copied form resnet.py)
        self.conv1 = nn.Conv2d(in_chans, 64, kernel_size=7, stride=2, padding=3, bias=False)  # 1 / 2 [112, 112]
        self.bn1 = nn.BatchNorm2d(64)
        self.act1 = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)  # 1 / 4 [56, 56]

        # 1 stage
        stage_1_channel = int(base_channel * channel_ratio)
        trans_dw_stride = patch_size // 4
        self.conv_1 = ConvBlock(inplanes=64, outplanes=stage_1_channel, res_conv=True, stride=1)
        self.trans_patch_conv = nn.Conv2d(64, embed_dim, kernel_size=trans_dw_stride, stride=trans_dw_stride, padding=0)
        self.trans_1 = Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
                             qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=self.trans_dpr[0],
                             )

        # 2~4 stage
        init_stage = 2
        fin_stage = depth // 3 + 1
        for i in range(init_stage, fin_stage):
            self.add_module('conv_trans_' + str(i),
                            ConvTransBlock(
                                stage_1_channel, stage_1_channel, False, 1, dw_stride=trans_dw_stride,
                                embed_dim=embed_dim,
                                num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                                drop_rate=drop_rate, attn_drop_rate=attn_drop_rate,
                                drop_path_rate=self.trans_dpr[i - 1],
                                num_med_block=num_med_block
                            )
                            )

        stage_2_channel = int(base_channel * channel_ratio * 2)
        # 5~8 stage
        init_stage = fin_stage  # 5
        fin_stage = fin_stage + depth // 3  # 9
        for i in range(init_stage, fin_stage):
            s = 2 if i == init_stage else 1
            in_channel = stage_1_channel if i == init_stage else stage_2_channel
            res_conv = True if i == init_stage else False
            self.add_module('conv_trans_' + str(i),
                            ConvTransBlock(
                                in_channel, stage_2_channel, res_conv, s, dw_stride=trans_dw_stride // 2,
                                embed_dim=embed_dim,
                                num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                                drop_rate=drop_rate, attn_drop_rate=attn_drop_rate,
                                drop_path_rate=self.trans_dpr[i - 1],
                                num_med_block=num_med_block
                            )
                            )

        stage_3_channel = int(base_channel * channel_ratio * 2 * 2)
        # 9~12 stage
        init_stage = fin_stage  # 9
        fin_stage = fin_stage + depth // 3  # 13
        for i in range(init_stage, fin_stage):
            s = 2 if i == init_stage else 1
            in_channel = stage_2_channel if i == init_stage else stage_3_channel
            res_conv = True if i == init_stage else False
            last_fusion = True if i == depth else False
            self.add_module('conv_trans_' + str(i),
                            ConvTransBlock(
                                in_channel, stage_3_channel, res_conv, s, dw_stride=trans_dw_stride // 4,
                                embed_dim=embed_dim,
                                num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                                drop_rate=drop_rate, attn_drop_rate=attn_drop_rate,
                                drop_path_rate=self.trans_dpr[i - 1],
                                num_med_block=num_med_block, last_fusion=last_fusion
                            )
                            )
        self.fin_stage = fin_stage

        trunc_normal_(self.cls_token, std=.02)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        elif isinstance(m, nn.BatchNorm2d):
            nn.init.constant_(m.weight, 1.)
            nn.init.constant_(m.bias, 0.)

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = get_root_logger()
            load_checkpoint(self, pretrained, strict=False, logger=logger, map_location='cpu')
        elif pretrained is None:
            self.apply(self._init_weights)
        else:
            raise TypeError('pretrained must be a str or None')

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'cls_token',}

    def forward(self, x):
        output = []
        B = x.shape[0]
        cls_tokens = self.cls_token.expand(B, -1, -1)

        # stem
        x_base = self.maxpool(self.act1(self.bn1(self.conv1(x))))

        # 1 stage [N, 64, 56, 56] -> [N, 128, 56, 56]
        x = self.conv_1(x_base, return_x_2=False)
        x_t = self.trans_patch_conv(x_base).flatten(2).transpose(1, 2)
        x_t = torch.cat([cls_tokens, x_t], dim=1)
        x_t = self.trans_1(x_t)

        # 2 ~ final
        for i in range(2, self.fin_stage):
            x, x_t = eval('self.conv_trans_' + str(i))(x, x_t)
            if i in [4, 8, 11, 12]:
                output.append(x)

        if self.return_cls_token:
            return tuple(output), self.trans_cls_head(self.trans_norm(x_t[:, [0,]]))
        else:
            return tuple(output)

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            self.bn1.eval()
            for m in [self.conv1, self.bn1]:
                for param in m.parameters():
                    param.requires_grad = False

        # for i in range(1, self.frozen_stages + 1):
        #     m = getattr(self, f'layer{i}')
        #     m.eval()
        #     for param in m.parameters():
        #         param.requires_grad = False

    def freeze_bn(self, m):
        if isinstance(m, nn.BatchNorm2d):
            m.eval()

    def train(self, mode=True):
        """Convert the model into training mode while keep normalization layer
        freezed."""
        super(Conformer, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            self.apply(self.freeze_bn)

python

batchsize也是2,不过会freeze stem stage和BN层

感谢分享!freeze 的层的参数是预训练出来的参数吗?这个地方为什么要freeze 呢?我这边原模型层数很少,batch大,主要用来训练作文行,用法和你这边基本一致,在stage 里边取了4,8,11,12层的特征送入fpn。我接下来把stage 调小,batch 调大,尝试一下。

客气,freeze的层参数就是分类实验得到的,freeze的原因就是检测时batchsize太小了,对于BN来说是很致命的问题,这一点在resnet以及其他的网络作为检测的基网时都会使用的。

commented

x, x_t = eval('self.conv_trans_' + str(i))(x, x_t)这里eval,为什么不用self.add_module

@eeric eval是调用,add_module是定义,不知道有没有get到你的点,

commented

好,很新奇吧,第一次遇到,我正在把conformer网络用于人脸识别实验了

嗯哼,谢谢。那你可真是个小机灵鬼,^_^