mehdidc / stylegan_xl

StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

This repository contains code for the paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets"

by Axel Sauer, Katja Schwarz, and Andreas Geiger.

If you find our code or paper useful, please cite

@InProceedings{Sauer2021ARXIV,
  author    = {Axel Sauer and Katja Schwarz and Andreas Geiger},
  title     = {StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets},
  journal   = {arXiv.org},
  volume    = {abs/2201.00273},
  year      = {2022},
  url       = {https://arxiv.org/abs/2201.00273},
}

ToDos

  • Initial code release
  • Add pretrained models (ImageNet{16,32,64,128}, FFHQ256, Pokemon256)
  • Add higher resolution models (ImageNet{256,512,1024})
  • Add PTI for inversion
  • Add StyleMC for editing

The higher resolution models are currently retraining with improved settings, weights will be gradually rolled out. Expected release of the ImageNet256 model is 14.04.2022.

Requirements

  • 64-bit Python 3.8 and PyTorch 1.9.0 (or later). See https://pytorch.org for PyTorch install instructions.
  • CUDA toolkit 11.1 or later.
  • GCC 7 or later compilers. The recommended GCC version depends on your CUDA version; see for example, CUDA 11.4 system requirements.
  • If you run into problems when setting up the custom CUDA kernels, we refer to the Troubleshooting docs of the original StyleGAN3 repo.
  • Use the following commands with Miniconda3 to create and activate your PG Python environment:
    • conda env create -f environment.yml
    • conda activate sgxl

Data Preparation

For a quick start, you can download the few-shot datasets provided by the authors of FastGAN. You can download them here. To prepare the dataset at the respective resolution, run

python dataset_tool.py --source=./data/pokemon --dest=./data/pokemon256.zip \
  --resolution=256x256 --transform=center-crop

You need to follow our progressive growing scheme to get the best results. Therefore, you should prepare separate zips for each training resolution. You can get the datasets we used in our paper at their respective websites (FFHQ, ImageNet).

Training

For progressive growing, we train a stem on low resolution, e.g., 162 pixels. When the stem is finished, i.e., FID is saturating, you can start training the upper stages; we refer to these as superresolution stages.

Training the stem

Training StyleGAN-XL on Pokemon using 8 GPUs:

python train.py --outdir=./training-runs/pokemon --cfg=stylegan3-t --data=./data/pokemon16.zip \
    --gpus=8 --batch=64 --mirror=1 --snap 10 --batch-gpu 8 --kimg 10000 --stem --syn_layers 10

--batch specifies the overall batch size, --batch-gpu specifies the batch size per GPU. The training loop will automatically accumulate gradients if you use fewer GPUs until the overall batch size is reached.

Samples and metrics are saved in outdir. If you don't want to track metrics, set --metrics=none. You can inspect fid50k_full.json or run tensorboard in training-runs/ to monitor the training progress.

For a class-conditional dataset (ImageNet, CIFAR-10), add the flag --cond True . The dataset needs to contain the class labels; see the StyleGAN2-ADA repo on how to prepare class-conditional datasets.

Training the super-resolution stages

Continuing with pretrained stem:

python train.py --outdir=./training-runs/pokemon --cfg=stylegan3-t --data=./data/pokemon32.zip 
  --gpus=8 --batch=64 --mirror=1 --snap 10 --batch-gpu 8 --kimg 10000 --stem --syn_layers 10 \
  --superres --up_factor 2 --head_layers 7 \
  --path_stem training-runs/pokemon/00000-stylegan3-t-pokemon16-gpus8-batch64/best_model.pkl

--up_factor allows to train several stages at once, i.e., with --up_factor=4 and a 162 stem you can directly train at resolution 642.

If you have enough compute, a good tactic is to train several stages in parallel and then restart the superresolution stage training once in a while. The current stage will then reload its previous stem's best_model.pkl. Performance can sometimes drop at first because of domain shift, but the superresolution stage quickly recovers and improves further.

Generating Samples & Interpolations

To generate samples and interpolation videos, run

python gen_images.py --outdir=out --trunc=0.7 --seeds=10-15 \
  --network=PATH_TO_NETWORK_PKL

and

python gen_video.py --output=lerp.mp4 --trunc=0.7 --seeds=0-31 --grid=4x2 \
  --network=PATH_TO_NETWORK_PKL

For class-conditional models, you can pass the class index via --class, a index-to-label dictionary for Imagenet can be found here. We provide the following pretrained models (pass the url as PATH_TO_NETWORK_PKL):

Dataset Res FID PATH
ImageNet 162 0.74 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet16.pkl
ImageNet 322 1.11 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet32.pkl
ImageNet 642 1.55 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet64.pkl
ImageNet 1282 1.94 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet128.pkl
CIFAR10 322 1.85 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/cifar10.pkl
FFHQ 2562 2.19 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/ffhq256.pkl
Pokemon 2562 23.97 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon256.pkl

Quality Metrics

Per default, train.py tracks FID50k during training. To calculate metrics for a specific network snapshot, run

python calc_metrics.py --metrics=fid50k_full --network=PATH_TO_NETWORK_PKL

To see the available metrics, run

python calc_metrics.py --help

We provide precomputed FID statistics for all pretrained models:

wget https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/gan-metrics.zip
unzip gan-metrics.zip -d dnnlib/

Further Information

This repo builds on the codebase of StyleGAN3 and our previous project Projected GANs Converge Faster.

About

StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

License:MIT License


Languages

Language:Python 83.2%Language:Cuda 12.7%Language:C++ 4.1%