A SQLPlate (SQL template) provide the generator object for SQL template statements via Python API object. All SQL template files are store in the Jinja template format that is the powerful template tool package.
The layer of SQL template files will be:
📂templates/
├─ 📂databricks/
│ ├─ 📂macros/
│ │ ╰─ ⚙️delta.jinja
│ ├─ 📜etl.delta.sql
│ ├─ 📜etl.scd2.sql
│ ╰─ 📜select.sql
├─ 📂synapse-dedicate/
│ ╰─ 📜etl.delta.sql
╰─ 📂utils/
╰─ ⚙️etl_vars.jinja
Important
The first object of this project is ETL statement generating package for dynamic service change. You can change a compute SQL service any time while the ETL codes do not change.
pip install -U sqlplateStart passing option parameters before generate Delta ETL SQL template that use on the Databricks service.
from datetime import datetime
from sqlplate import SQLPlate
statement: str = (
SQLPlate.format('databricks')
.template('etl.delta')
.option('catalog', 'catalog-name')
.option('schema', 'schema-name')
.option('table', 'table-name')
.option('pk', 'pk_col')
.option('columns', ['col01', 'col02'])
.option('query', 'SELECT * FROM catalog-name.schema-name.source-name')
.option('load_src', 'SOURCE_FOO')
.option('load_id', 1)
.option('load_date', datetime(2025, 2, 1, 10))
.option('only_main', True)
.load()
)
print(statement.strip().strip('\n'))Result SQL statement that was generated from this package.
MERGE INTO catalog-name.schema-name.table-name AS target
USING (
WITH change_query AS (
SELECT
src.*,
CASE WHEN tgt.pk_col IS NULL THEN 99
WHEN hash(src.col01, src.col02) <> hash(tgt.col01, tgt.col02) THEN 1
ELSE 0 END AS data_change
FROM ( SELECT * FROM catalog-name.schema-name.source-name ) AS src
LEFT JOIN catalog-name.schema-name.table-name AS tgt
ON tgt.col01 = src.col01
AND tgt.col02 = src.col02
)
SELECT * EXCEPT( data_change ) FROM change_query WHERE data_change IN (99, 1)
) AS source
ON target.pk_col = source.pk_col
WHEN MATCHED THEN UPDATE
SET target.col01 = source.col01
, target.col02 = source.col02
, target.updt_load_src = 'SOURCE_FOO'
, target.updt_load_id = 1
, target.updt_load_date = to_timestamp('20250201', 'yyyyMMdd')
WHEN NOT MATCHED THEN INSERT
(
col01, col02, pk_col, load_src, load_id, load_date, updt_load_src, updt_load_id, updt_load_date
)
VALUES (
source.col01,
source.col02,
source.pk_col,
'SOURCE_FOO',
1,
20250201,
'SOURCE_FOO',
1,
to_timestamp('20250201', 'yyyyMMdd')
)
;
| System | Status | Remark |
|---|---|---|
| databricks | 🟢 | |
| postgres | 🔴 | |
| mysql | 🔴 | |
| mssql | 🔴 | |
| synapse | 🔴 | |
| bigquery | 🟡 | |
| snowflake | 🔴 | |
| sqlite | 🟡 |
Note
- 🟢 Complete
- 🟡 In progress
- 🔴 Does not develop yet
- 🟣 Does not plan to support
I do not think this project will go around the world because it has specific propose, and you can create by your coding without this project dependency for long term solution. So, on this time, you can open the GitHub issue on this project 🙌 for fix bug or request new feature if you want it.