kmadof / container-apps-azapi-terraform

This sample shows how to deploy a Dapr application to Azure Container Apps using Terraform with the AzAPI Provider.

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

page_type languages products name description urlFragment
sample
azurecli
bash
terraform
yaml
json
azure
azure-container-apps
azure-storage
azure-blob-storage
azure-storage-accounts
azure-monitor
azure-log-analytics
azure-application-insights
Deploy a Dapr application to Azure Container Apps with Terraform and AzAPI Provider
This sample shows how to deploy a Dapr application to Azure Container Apps using Terraform modules and the AzAPI Provider.
container-apps-azapi-terraform

Deploy a Dapr application to Azure Container Apps with Terraform and AzAPI Provider

Dapr (Distributed Application Runtime) is a runtime that helps you build resilient stateless and stateful microservices. This sample shows how to deploy a Dapr application to Azure Container Apps using Terraform modules and the AzAPI Provider instead of an Azure Resource Manager (ARM) or Bicep template like in the original sample Tutorial: Deploy a Dapr application to Azure Container Apps with an Azure Resource Manager or Bicep template.

In this sample you will learn how to:

  • Use Terraform and AzAPI Provider to deploy an microservice-based application to Azure Contains Apps.
  • Create an Azure Blob Storage for use as a Dapr state store
  • Deploy an Azure Container Apps environment to host one or more Azure Container Apps
  • Deploy two Dapr-enabled Azure Container Apps: one that produces orders and one that consumes orders and stores them
  • Verify the interaction between the two microservices.

With Azure Container Apps, you get a fully managed version of the Dapr APIs when building microservices. When you use Dapr in Azure Container Apps, you can enable sidecars to run next to your microservices that provide a rich set of capabilities. Available Dapr APIs include Service to Service calls, Pub/Sub, Event Bindings, State Stores, and Actors.

In this sample, you deploy the same applications from the Dapr Hello World quickstart.

The application consists of:

  • A client (Python) container app to generate messages.
  • A service (Node) container app to consume and persist those messages in a state store

The following architecture diagram illustrates the components that make up this tutorial:

Architecture

Prerequisites

What is AzAPI Provider?

The AzAPI Provider is a very thin layer on top of the Azure ARM REST APIs. This provider compliments the AzureRM provider by enabling the management of Azure resources that are not yet or may never be supported in the AzureRM provider such as private/public preview services and features. The AzAPI provider enables you to manage any Azure resource type using any API version. This provider complements the AzureRM provider by enabling the management of new Azure resources and properties (including private preview). For more information, see Overview of the Terraform AzAPI provider.

Terraform modules

This sample contains Terraform modules to create the following resources:

The following table contains the code of the modules/contains_apps/main.tf Terraform module used to create the Azure Container Apps environment, Dapr components, and Container Apps.

terraform {
  required_version = ">= 1.0"
  required_providers {
    azurerm = {
      source  = "hashicorp/azurerm"
      version = "3.3.0"
    }
    azapi = {
      source  = "Azure/azapi"
      version = "0.4.0"
    }
  }
  experiments = [module_variable_optional_attrs]
}

locals {
  module_tag = {
    "module" = basename(abspath(path.module))
  }
  tags = merge(var.tags, local.module_tag)
}

resource "azapi_resource" "managed_environment" {
  name      = var.managed_environment_name
  location  = var.location
  parent_id = var.resource_group_id
  type      = "Microsoft.App/managedEnvironments@2022-03-01"
  tags      = local.tags
  
  body = jsonencode({
    properties = {
      daprAIInstrumentationKey = var.instrumentation_key
      appLogsConfiguration = {
        destination = "log-analytics"
        logAnalyticsConfiguration = {
          customerId = var.workspace_id
          sharedKey  = var.primary_shared_key
        }
      }
    }
  })

  lifecycle {
    ignore_changes = [
        tags
    ]
  }
}

resource "azapi_resource" "daprComponents" {
  for_each  = {for component in var.dapr_components: component.name => component}

  name      = each.key
  parent_id = azapi_resource.managed_environment.id
  type      = "Microsoft.App/managedEnvironments/daprComponents@2022-03-01"

  body = jsonencode({
    properties = {
      componentType   = each.value.componentType
      version         = each.value.version
      ignoreErrors    = each.value.ignoreErrors
      initTimeout     = each.value.initTimeout
      secrets         = each.value.secrets
      metadata        = each.value.metadata
      scopes          = each.value.scopes
    }
  })
}

resource "azapi_resource" "container_app" {
  for_each  = {for app in var.container_apps: app.name => app}

  name      = each.key
  location  = var.location
  parent_id = var.resource_group_id
  type      = "Microsoft.App/containerApps@2022-03-01"
  tags      = local.tags

  body = jsonencode({
    properties: {
      managedEnvironmentId  = azapi_resource.managed_environment.id
      configuration         = {
        ingress             = try(each.value.configuration.ingress, null)
        dapr                = try(each.value.configuration.dapr, null)
      }
      template              = each.value.template
    }
  })

  lifecycle {
    ignore_changes = [
        tags
    ]
  }
}

As you can see, the module uses an azapi_resource to create the resources. You can use an azapi_resource to fully manage any Azure (control plane) resource (API) with full CRUD. Example Use Cases:

  • New preview service
  • New feature added to existing service
  • Existing feature or service not currently supported by the AzureRM provider

For more information, see Overview of the Terraform AzAPI provider.

Deploy the sample

All the resources deployed by the modules share the same name prefix. Make sure to configure a name prefix by setting a value for the resource_prefix variable defined in the variables.tf file. If you set the value of the resource_prefix variable to an empty string, the main.tf module will use a random_string resource to automatically create a name prefix for the Azure resources. You can use the deploy.sh bash script to deploy the sample:

#!/bin/bash

# Terraform Init
terraform init

# Terraform validate
terraform validate -compact-warnings

# Terraform plan
terraform plan -compact-warnings -out main.tfplan

# Terraform apply
terraform apply -compact-warnings -auto-approve main.tfplan

This command deploys the Terraform modules that create the following resources:

  • The Container Apps environment and associated Log Analytics workspace for hosting the hello world Dapr solution.
  • An Application Insights instance for Dapr distributed tracing.
  • The nodeapp app server running on targetPort: 3000 with dapr enabled and configured using: "appId": "nodeapp" and "appPort": 3000.
  • The daprComponents object of "type": "state.azure.blobstorage" scoped for use by the nodeapp for storing state.
  • The headless pythonapp with no ingress and Dapr enabled that calls the nodeapp service via dapr service-to-service communication.

Verify the result

Confirm successful state persistence

You can confirm that the services are working correctly by viewing data in your Azure Storage account.

  1. Open the Azure portal in your browser.
  2. Navigate to your storage account.
  3. Select Containers from the menu on the left side.
  4. Select state.
  5. Verify that you can see the file named order in the container.
  6. Select on the file.
  7. Select the Edit tab.
  8. Select the Refresh button to observe updates.

View Logs

Data logged via a container app are stored in the ContainerAppConsoleLogs_CL custom table in the Log Analytics workspace. You can view logs through the Azure portal or from the command line. Wait a few minutes for the analytics to arrive for the first time before you query the logged data.

  1. Open the Azure portal in your browser.
  2. Navigate to your log analytics workspace.
  3. Select Logs from the menu on the left side.
  4. Run the following Kusto query.
ContainerAppConsoleLogs_CL 
| project TimeGenerated, ContainerAppName_s, Log_s
| order by TimeGenerated desc

The following images shows the type of response to expect from the command.

Logs

Clean up resources

Once you are done, run the following command to delete your resource group along with all the resources you created in this tutorial.

az group delete \
  --resource-group $RESOURCE_GROUP

Since pythonapp continuously makes calls to nodeapp with messages that get persisted into your configured state store, it is important to complete these cleanup steps to avoid ongoing billable operations.

Next steps

About

This sample shows how to deploy a Dapr application to Azure Container Apps using Terraform with the AzAPI Provider.

License:MIT License


Languages

Language:HCL 99.1%Language:Shell 0.9%