jbrry / parser

A PyTorch implementation of "Deep Biaffine Attention for Neural Dependency Parsing".

Home Page:https://arxiv.org/abs/1611.01734

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Biaffine Parser

Travis LICENSE GitHub stars GitHub forks

An implementation of "Deep Biaffine Attention for Neural Dependency Parsing".

Details and hyperparameter choices are almost identical to those described in the paper, except that we provide the Eisner rather than MST algorithm to ensure well-formedness. Practically, projective decoding like Eisner is the best choice since PTB contains mostly (99.9%) projective trees.

Besides the basic implementations, we also provide other features to replace the POS tags (TAG), i.e., character-level embeddings (CHAR) and BERT.

Requirements

Datasets

The model is evaluated on the Stanford Dependency conversion (v3.3.0) of the English Penn Treebank with POS tags predicted by Stanford POS tagger.

For all datasets, we follow the conventional data splits:

  • Train: 02-21 (39,832 sentences)
  • Dev: 22 (1,700 sentences)
  • Test: 23 (2,416 sentences)

Performance

FEAT UAS LAS Speed (Sents/s)
TAG 95.90 94.25 1696.22
TAG + Eisner 95.93 94.28 350.46
CHAR 95.99 94.38 1464.59
CHAR + Eisner 96.02 94.41 323.73
BERT 96.64 95.11 438.72
BERT + Eisner 96.65 95.12 214.68

Note that punctuation is ignored in all evaluation metrics for PTB.

Aside from using consistent hyperparameters, there are some keypoints that significantly affect the performance:

  • Dividing the pretrained embedding by its standard-deviation
  • Applying the same dropout mask at every recurrent timestep
  • Jointly dropping the word and additional feature representations

For the above reasons, we may have to give up some native modules in pytorch (e.g., LSTM and Dropout), and use custom ones instead.

As shown above, our results have outperformed the offical implementation (95.74 and 94.08). Incorporating character-level features or external embeddings like BERT can further improve the performance of the model.

Usage

You can start the training, evaluation and prediction process by using subcommands registered in parser.cmds.

$ python run.py -h
usage: run.py [-h] {evaluate,predict,train} ...

Create the Biaffine Parser model.

optional arguments:
  -h, --help            show this help message and exit

Commands:
  {evaluate,predict,train}
    evaluate            Evaluate the specified model and dataset.
    predict             Use a trained model to make predictions.
    train               Train a model.

Before triggering the subcommands, please make sure that the data files must be in CoNLL-X format. If some fields are missing, you can use underscores as placeholders. Below are some examples:

$ python run.py train -p -d=0 -f=exp/ptb.char --feat=char  \
      --ftrain=data/ptb/train.conllx  \
      --fdev=data/ptb/dev.conllx  \
      --ftest=data/ptb/test.conllx  \
      --fembed=data/glove.6B.100d.txt  \
      --unk=unk

$ python run.py evaluate -d=0 -f=exp/ptb.char --feat=char --tree  \
      --fdata=data/ptb/test.conllx

$ cat data/naive.conllx 
1       Too     _       _       _       _       _       _       _       _
2       young   _       _       _       _       _       _       _       _
3       too     _       _       _       _       _       _       _       _
4       simple  _       _       _       _       _       _       _       _
5       ,       _       _       _       _       _       _       _       _
6       sometimes       _       _       _       _       _       _       _       _
7       naive   _       _       _       _       _       _       _       _
8       .       _       _       _       _       _       _       _       _

$ python run.py predict -d=0 -f=exp/ptb.char --feat=char --tree  \
      --fdata=data/naive.conllx  \
      --fpred=naive.conllx

$ cat naive.conllx
1       Too     _       _       _       _       2       advmod  _       _
2       young   _       _       _       _       0       root    _       _
3       too     _       _       _       _       4       advmod  _       _
4       simple  _       _       _       _       2       dep     _       _
5       ,       _       _       _       _       2       punct   _       _
6       sometimes       _       _       _       _       7       advmod  _       _
7       naive   _       _       _       _       2       dep     _       _
8       .       _       _       _       _       2       punct   _       _

All the optional arguments of the subcommands are as follows:

$ python run.py train -h
usage: run.py train [-h] [--buckets BUCKETS] [--punct] [--ftrain FTRAIN]
                    [--fdev FDEV] [--ftest FTEST] [--fembed FEMBED]
                    [--unk UNK] [--conf CONF] [--file FILE] [--preprocess]
                    [--device DEVICE] [--seed SEED] [--threads THREADS]
                    [--tree] [--feat {tag,char,bert}]

optional arguments:
  -h, --help            show this help message and exit
  --buckets BUCKETS     max num of buckets to use
  --punct               whether to include punctuation
  --ftrain FTRAIN       path to train file
  --fdev FDEV           path to dev file
  --ftest FTEST         path to test file
  --fembed FEMBED       path to pretrained embeddings
  --unk UNK             unk token in pretrained embeddings
  --conf CONF, -c CONF  path to config file
  --file FILE, -f FILE  path to saved files
  --preprocess, -p      whether to preprocess the data first
  --device DEVICE, -d DEVICE
                        ID of GPU to use
  --seed SEED, -s SEED  seed for generating random numbers
  --threads THREADS, -t THREADS
                        max num of threads
  --tree                whether to ensure well-formedness
  --feat {tag,char,bert}
                        choices of additional features

$ python run.py evaluate -h
usage: run.py evaluate [-h] [--batch-size BATCH_SIZE] [--buckets BUCKETS]
                       [--punct] [--fdata FDATA] [--conf CONF] [--file FILE]
                       [--preprocess] [--device DEVICE] [--seed SEED]
                       [--threads THREADS] [--tree] [--feat {tag,char,bert}]

optional arguments:
  -h, --help            show this help message and exit
  --batch-size BATCH_SIZE
                        batch size
  --buckets BUCKETS     max num of buckets to use
  --punct               whether to include punctuation
  --fdata FDATA         path to dataset
  --conf CONF, -c CONF  path to config file
  --file FILE, -f FILE  path to saved files
  --preprocess, -p      whether to preprocess the data first
  --device DEVICE, -d DEVICE
                        ID of GPU to use
  --seed SEED, -s SEED  seed for generating random numbers
  --threads THREADS, -t THREADS
                        max num of threads
  --tree                whether to ensure well-formedness
  --feat {tag,char,bert}
                        choices of additional features

$ python run.py predict -h
usage: run.py predict [-h] [--batch-size BATCH_SIZE] [--fdata FDATA]
                      [--fpred FPRED] [--conf CONF] [--file FILE]
                      [--preprocess] [--device DEVICE] [--seed SEED]
                      [--threads THREADS] [--tree] [--feat {tag,char,bert}]

optional arguments:
  -h, --help            show this help message and exit
  --batch-size BATCH_SIZE
                        batch size
  --fdata FDATA         path to dataset
  --fpred FPRED         path to predicted result
  --conf CONF, -c CONF  path to config file
  --file FILE, -f FILE  path to saved files
  --preprocess, -p      whether to preprocess the data first
  --device DEVICE, -d DEVICE
                        ID of GPU to use
  --seed SEED, -s SEED  seed for generating random numbers
  --threads THREADS, -t THREADS
                        max num of threads
  --tree                whether to ensure well-formedness
  --feat {tag,char,bert}
                        choices of additional features

Hyperparameters

Param Description Value
n_embed dimension of embeddings 100
n_char_embed dimension of char embeddings 50
n_bert_layers number of bert layers to use 4
embed_dropout dropout ratio of embeddings 0.33
n_lstm_hidden dimension of lstm hidden states 400
n_lstm_layers number of lstm layers 3
lstm_dropout dropout ratio of lstm 0.33
n_mlp_arc arc mlp size 500
n_mlp_rel label mlp size 100
mlp_dropout dropout ratio of mlp 0.33
lr starting learning rate of training 2e-3
betas hyperparameters of momentum and L2 norm (0.9, 0.9)
epsilon stability constant 1e-12
annealing formula of learning rate annealing
batch_size approximate number of tokens per training update 5000
epochs max number of epochs 50000
patience patience for early stop 100
min_freq minimum frequency of words in the training set not discarded 2
fix_len fixed length of a word 20

References

About

A PyTorch implementation of "Deep Biaffine Attention for Neural Dependency Parsing".

https://arxiv.org/abs/1611.01734

License:MIT License


Languages

Language:Python 100.0%