Evgeny Zavarygin (ezavarygin)

ezavarygin

Geek Repo

Company:Unity Technologies

Location:Helsinki

Home Page:https://www.linkedin.com/in/evgeny-zavarygin/

Github PK Tool:Github PK Tool

Evgeny Zavarygin's repositories

PConv2D_Keras

Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions" [Liu et al. 2018]

Language:PythonLicense:NOASSERTIONStargazers:10Issues:3Issues:4

voffset

Tool to find velocity off-sets between optical spectra.

Language:PythonLicense:MITStargazers:3Issues:2Issues:2

fdd_checkup

Tool to determine optimal FDD's step sizes in VPFIT software.

Language:PythonLicense:MITStargazers:1Issues:1Issues:2

vgg16_pytorch2keras

The VGG16 convolutional layers' weights trained on PyTorch and ported to Keras

Language:PythonStargazers:1Issues:4Issues:0

wspectrum

Program to co-add 1D-spectra taking into account relative velocity off-sets.

Language:PythonLicense:MITStargazers:1Issues:0Issues:0

awesome-offline-rl

An index of algorithms for offline reinforcement learning (offline-rl)

Stargazers:0Issues:0Issues:0
Language:PythonStargazers:0Issues:1Issues:0

keras

Deep Learning for humans

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0
Language:C++License:BSD-3-ClauseStargazers:0Issues:0Issues:0

PConv-Keras

Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions"

Language:Jupyter NotebookLicense:MITStargazers:0Issues:0Issues:0

q1009p2956

D/H measurement at z=2.504 LLS towards Q1009+2956 (supplementary files).

License:Apache-2.0Stargazers:0Issues:0Issues:0

RecDebiasing

This repository collects debiasing methods for recommendation

Stargazers:0Issues:0Issues:0

rtb-papers

A collection of research and survey papers of real-time bidding (RTB) based display advertising techniques.

Stargazers:0Issues:0Issues:0

sky_plot

Script to plot position of objects in the sky in equatorial and galactic coordinates.

Language:PythonLicense:MITStargazers:0Issues:3Issues:0

tuning_playbook

A playbook for systematically maximizing the performance of deep learning models.

License:NOASSERTIONStargazers:0Issues:1Issues:0