baudm / parseq

Scene Text Recognition with Permuted Autoregressive Sequence Models (ECCV 2022)

Home Page:https://huggingface.co/spaces/baudm/PARSeq-OCR

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

How to use ./test.py to test a model on my own dataset?

codeandbit opened this issue · comments

I have made my own train,val,and test dataset. The file structure is:

data
├── test
│   ├── data.mdb
│   └── lock.mdb
├── train
│   └── real
│       ├── data.mdb
│       └── lock.mdb
└── val
    ├── data.mdb
    └── lock.mdb

I have trained a model using my own dataset under data/train/real/ and data/val/. But I don't know how to test this model using dataset under data/test/.

In test.py, I can't find a parameter specifying the test dataset:

parseq/test.py

Lines 65 to 75 in 8fa5100

def main():
parser = argparse.ArgumentParser()
parser.add_argument('checkpoint', help="Model checkpoint (or 'pretrained=<model_id>')")
parser.add_argument('--data_root', default='data')
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--cased', action='store_true', default=False, help='Cased comparison')
parser.add_argument('--punctuation', action='store_true', default=False, help='Check punctuation')
parser.add_argument('--new', action='store_true', default=False, help='Evaluate on new benchmark datasets')
parser.add_argument('--rotation', type=int, default=0, help='Angle of rotation (counter clockwise) in degrees.')
parser.add_argument('--device', default='cuda')

And if I run directly ./test.py outputs/<model>/<timestamp>/checkpoints/last.ckpt, it will report an error:

Additional keyword arguments: {'charset_test': '0123456789abcdefghijklmnopqrstuvwxyz'}
Traceback (most recent call last):
  File "./test.py", line 133, in <module>
    main()
...
...
...
lmdb.Error: data/test/CUTE80: No such file or directory

My charset_test is not '0123456789abcdefghijklmnopqrstuvwxyz' and I don't want to test the model on CUTE80.

commented

In strhub/data/module.py, at the top of the function there is a bunch of variable. These are tuples that contain test dataset names, including CUTE80. By default, test.py will only look after TEST_BENCHMARK and TEST_BENCHMARK_SUB.

There is already a parameter in test.py called new that allows you to include TEST_NEW datasets to you test trial.

If you want to train only on your own data set, you can create another tuple, let's say TEST_CUSTOM=("MyDataset" , ) and then in test.py change the way test datasets are selected:

    parser.add_argument('--std', action='store_true', default=False, help='Evaluate on standard benchmark datasets')
    parser.add_argument('--new', action='store_true', default=False, help='Evaluate on new benchmark datasets')
    parser.add_argument('--custom', action='store_true', default=True, help='Evaluate on custom personal datasets')

    [...]

    test_set = tuple()
    if args.std:
        test_set = SceneTextDataModule.TEST_BENCHMARK_SUB + SceneTextDataModule.TEST_BENCHMARK
    if args.custom:
        test_set += SceneTextDataModule.TEST_CUSTOM
    if args.new:
        test_set += SceneTextDataModule.TEST_NEW
    test_set = sorted(set(test_set))
 
    [...]

    result_groups = dict()

    if args.std:
        result_groups.update({'Benchmark (Subset)': SceneTextDataModule.TEST_BENCHMARK_SUB})
        result_groups.update({'Benchmark': SceneTextDataModule.TEST_BENCHMARK})
    if args.custom:
        result_groups.update({'Custom': SceneTextDataModule.TEST_CUSTOM})
    if args.new:
        result_groups.update({'New': SceneTextDataModule.TEST_NEW})

Now if you want to change your charset_test:

  1. Open configs/main.yaml
  2. Under model set charset_test: ???
  3. Open configs/charset/your_custom_file_or_we_else.yaml
  4. Add the line charset_test: "myCustomCharsetTest"
  5. Make sur in configs/main.yaml that at the top, under defaults charset: your_custom_file_or_we_else

Edit: The modification of the .yaml file must be done prior to training of the model even though it concerns charset_test

Alternatively you can just change the value of charset_test in main.yaml but the lines above allow you to have multiple charset test under the conditions that you explicitly provide it in every charset_like.yaml file

That's so cool! I successfully test the model using your method. Thank you very much!

Thanks @bmusq.
Re: charset_test, the value in main.yaml is actually overridden by test.py. You may specify the characters directly in:

parseq/test.py

Line 84 in 8fa5100

kwargs.update({'charset_test': charset_test})

Excuse me, but is this necessary? Do I have to change the code:

parseq/test.py

Line 84 in 8fa5100

kwargs.update({'charset_test': charset_test})

to

kwargs.update({'charset_test': 'Lots of characters in my charset_test...'}) 

When I test the model on my test set 2 hours ago, it worked normally but I didn't change this line of code. The output was:

Additional keyword arguments: {'charset_test': '0123456789abcdefghijklmnopqrstuvwxyz'}
MyDataset: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 121/121 [01:20<00:00,  1.49it/s]

And the accuracy was 94%.

Did I just use '0123456789abcdefghijklmnopqrstuvwxyz' to test the model? But If so, the accuracy should be very low.

Also, I didn't change the value of charset_test in main.yaml directly. I just perform the following actions:

  1. Open configs/main.yaml
  2. Under model set charset_test: ???
  3. Open configs/charset/your_custom_file_or_we_else.yaml
  4. Add the line charset_test: "myCustomCharsetTest"
  5. Make sure in configs/main.yaml that at the top, under defaults charset: your_custom_file_or_we_else
commented

I have run a few tests on my own and it seems that any charset_test from a .yaml file, whether it is in some custom_case.yaml or even in the main.yaml never gets to the model in test.py if you changed them after you actually trained the model. If I print hp.charset_test I get the full 94 char (which were my charsets when I trained my model) regardless of the current value of my charset_test field in .yaml files.

My thoughts are that since you load an already built model, the charset_test is already define within the model. And this is why changing the value in .yaml a posteriori doesnt change anything. So i guess the trick with the .yaml file editing only works if you did so since training.

Though, as mentionned by baudm, the kwargs.update({'charset_test': charset_test}) overwrite it all and you can actually define your charset_test as will, even after you trained your model. By defaults kwargs.update({'charset_test': charset_test}) is set to '0123456789abcdefghijklmnopqrstuvwxyz'.

Now regarding the result of your test, it is indeed very strange. Something off somewhere and I couldn't figure out what
I would recommend to retry a test and directly edit kwargs.update({'charset_test': "My very long charset test"})

Yes, It is necessary to change the code:

parseq/test.py

Line 84 in 8fa5100

kwargs.update({'charset_test': charset_test})

to

kwargs.update({'charset_test': 'Lots of characters in my charset_test...'})

Before change, if I print hp.charset_test, it prints the full 94 char.

After change, if I print hp.charset_test, it prints my own charset.

Thank you!

commented

To put it in a nutshell, you can either:

  1. Change charset_test field in .yaml before training such that the model retain this value when load for testing. If you want to use this charset for test you need to disable kwargs.update of charset_test.
  2. Change charset_test value of the model at testing, after training, thanks to kwargs.update({'charset_test': "My Charset Test"}).

By defaults: charset_test is overriden by kwargs.update with value "0123456789abcdefghijklmnopqrstuvwxyz". This default string can further be modified with the native parameter cased and punctuation of test.py

@baudm Do you concur ?

To clarify:

  1. charset_test (from the yaml config) is only used by the model for validation during training.
  2. test.py always overrides charset_test. It became a bit confusing because I decided to not use Hydra in the scripts for inference (test.py, read.py). Still thinking whether to refactor that bit.

In summary, for now just specify charset_test directly inside test.py.

commented

Aaah thank you for clarifications !

But then, to make it more transparent, shouldn't charset_test from yaml config be called charset_val ?

@bmusq it can't be since all models (i.e. BaseSystem subclasses) expect a charset_test parameter.

Since a model checkpoint (either .ckpt or .pt) already contains the hyperparameters used for training, the config files aren't used anymore during inference (hence the decision to not use Hydra for test.py and read.py).

Hydra is only a train-time dependency. It's not required for using the model during inference. charset_test is used by validation_step and test_step.