alexhock / VaDE

Python code for paper - Variational Deep Embedding : A Generative Approach to Clustering

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

VaDE

This repository contains the Python implementation for our generative clustering method VaDE.

Further details about VaDE can be found in our paper:

Variational Deep Embedding : A Generative Approach to Clustering Requirements

  • Python-3.4.4
  • keras-1.1.0
  • scikit-learn-1.17.1

Replace keras/engine/training.py by training.py in this repository!!

(The modification version of keras/engine/training.py enables the simultaneous updating of the gmm parameters and the network parameters in our model.)

Usage

  • To train the VaDE model on the MNIST, Reuters, HHAR datasets:
python ./VaDE.py db

db can be one of mnist,reuters10k,har.

  • To achieve the 94.46% clustering accuracy on the MNIST dataset and generate the class-specified digits (Note that: unlike Conditional GAN, we do not use any supervised information during training):
python ./VaDE_test_mnist.py
  • To achieve the 79.38% clustering accuracy on the Reuters(685K) dataset:
cd $VaDE_ROOT/dataset/reuters
./get_data.sh
cd $VaDE_ROOT
python ./VaDE_test_reuters_all.py

Note: the data preprocessing code for the Reuters dataset is taken from (https://github.com/piiswrong/dec).

ezoic increase your site revenue

About

Python code for paper - Variational Deep Embedding : A Generative Approach to Clustering


Languages

Language:Python 99.2%Language:Shell 0.8%