predict_profile fails for penguins data because it is a tibble
pbiecek opened this issue · comments
Przemysław Biecek commented
this code generates an error
library("palmerpenguins")
data("penguins", package = "palmerpenguins")
library("mlr3")
library("mlr3learners")
penguins = na.omit(penguins)
task_peng = as_task_classif(penguins, target = "species")
learner = lrn("classif.ranger")
learner$predict_type = "prob"
learner$train(task_peng)
library("DALEX")
library("DALEXtra")
ranger_exp = explain_mlr3(learner,
data = penguins[test_set, ],
y = penguins[test_set, "species"],
label = "Ranger RF",
colorize = FALSE)
mumble <- penguins[1,]
predict(ranger_exp, mumble)
pmp1cp <- predict_profile(ranger_exp, as.data.frame(mumble))
plot(pmp1cp)
because all_observations[, var]
for tibble does not produce vector, it stays a tibble
suggested solution: use all_observations[[var]]
Przemysław Biecek commented
candidate fix in ModelOriented/ingredients@f061a70
is working with ingredients
2.3.0 and above
Przemysław Biecek commented
fixed in ModelOriented/ingredients@87bfca9